"""handle geo-referenced raster images""" from affine import Affine from numpy import ndarray as np_ndarray from samgis_core.utilities.type_hints import ListFloat, TupleFloat, DictStrInt from samgis_lisa_on_cuda import app_logger def load_affine_transformation_from_matrix(matrix_source_coefficients: ListFloat) -> Affine: """ Wrapper for rasterio.Affine.from_gdal() method Args: matrix_source_coefficients: 6 floats ordered by GDAL. Returns: Affine transform """ if len(matrix_source_coefficients) != 6: raise ValueError(f"Expected 6 coefficients, found {len(matrix_source_coefficients)}; " f"argument type: {type(matrix_source_coefficients)}.") try: a, d, b, e, c, f = (float(x) for x in matrix_source_coefficients) center = tuple.__new__(Affine, [a, b, c, d, e, f, 0.0, 0.0, 1.0]) return center * Affine.translation(-0.5, -0.5) except Exception as e: app_logger.exception(f"exception:{e}, check updates on https://github.com/rasterio/affine", extra=e, stack_info=True, exc_info=True) raise e def get_affine_transform_from_gdal(matrix_source_coefficients: ListFloat or TupleFloat) -> Affine: """wrapper for rasterio Affine from_gdal method Args: matrix_source_coefficients: 6 floats ordered by GDAL. Returns: Affine transform """ return Affine.from_gdal(*matrix_source_coefficients) def get_vectorized_raster_as_geojson(mask: np_ndarray, transform: TupleFloat) -> DictStrInt: """ Get shapes and values of connected regions in a dataset or array Args: mask: numpy mask transform: tuple of float to transform into an Affine transform Returns: dict containing the output geojson and the predictions number """ try: from rasterio.features import shapes from geopandas import GeoDataFrame app_logger.debug(f"matrix to consume with rasterio.shapes: {type(transform)}, {transform}.") # old value for mask => band != 0 shapes_generator = ({ 'properties': {'raster_val': v}, 'geometry': s} for i, (s, v) # instead of `enumerate(shapes(mask, mask=(band != 0), transform=rio_src.transform))` # use mask=None to avoid using source in enumerate(shapes(mask, mask=None, transform=transform)) ) app_logger.info("created shapes_generator, transform it to a polygon list...") shapes_list = list(shapes_generator) app_logger.info(f"created {len(shapes_list)} polygons.") gpd_polygonized_raster = GeoDataFrame.from_features(shapes_list, crs="EPSG:3857") app_logger.info("created a GeoDataFrame, export to geojson...") geojson = gpd_polygonized_raster.to_json(to_wgs84=True) app_logger.info("created geojson, preparing API response...") return { "geojson": geojson, "n_shapes_geojson": len(shapes_list) } except Exception as e_shape_band: try: app_logger.error(f"mask type:{type(mask)}.") app_logger.error(f"transform type:{type(transform)}, {transform}.") app_logger.error(f"mask shape:{mask.shape}, dtype:{mask.dtype}.") except Exception as e_shape_dtype: app_logger.exception(f"mask shape or dtype not found:{e_shape_dtype}.", exc_info=True) app_logger.exception(f"e_shape_band:{e_shape_band}.", exc_info=True) raise e_shape_band