import os from numpy import ndarray from samgis_core.utilities.type_hints import TupleFloat from xyzservices import TileProvider from samgis_lisa_on_cuda import app_logger from samgis_lisa_on_cuda.utilities.constants import (OUTPUT_CRS_STRING, DRIVER_RASTERIO_GTIFF, N_MAX_RETRIES, N_CONNECTION, N_WAIT, ZOOM_AUTO, BOOL_USE_CACHE) from samgis_lisa_on_cuda.utilities.type_hints import tuple_ndarray_transform bool_use_cache = int(os.getenv("BOOL_USE_CACHE", BOOL_USE_CACHE)) n_connection = int(os.getenv("N_CONNECTION", N_CONNECTION)) n_max_retries = int(os.getenv("N_MAX_RETRIES", N_MAX_RETRIES)) n_wait = int(os.getenv("N_WAIT", N_WAIT)) zoom_auto_string = os.getenv("ZOOM_AUTO", ZOOM_AUTO) def download_extent(w: float, s: float, e: float, n: float, zoom: int or str = zoom_auto_string, source: TileProvider or str = None, wait: int = n_wait, max_retries: int = n_max_retries, n_connections: int = n_connection, use_cache: bool = bool_use_cache) -> tuple_ndarray_transform: """ Download, merge and crop a list of tiles into a single geo-referenced image or a raster geodata Args: w: West edge s: South edge e: East edge n: North edge zoom: Level of detail source: The tile source: web tile provider or path to local file. The web tile provider can be in the form of a :class:`xyzservices.TileProvider` object or a URL. The placeholders for the XYZ in the URL need to be `{x}`, `{y}`, `{z}`, respectively. For local file paths, the file is read with `rasterio` and all bands are loaded into the basemap. IMPORTANT: tiles are assumed to be in the Spherical Mercator projection (EPSG:3857), unless the `crs` keyword is specified. wait: if the tile API is rate-limited, the number of seconds to wait between a failed request and the next try max_retries: total number of rejected requests allowed before contextily will stop trying to fetch more tiles from a rate-limited API. n_connections: Number of connections for downloading tiles in parallel. Be careful not to overload the tile server and to check the tile provider's terms of use before increasing this value. E.g., OpenStreetMap has a max. value of 2 (https://operations.osmfoundation.org/policies/tiles/). If allowed to download in parallel, a recommended value for n_connections is 16, and should never be larger than 64. use_cache: If False, caching of the downloaded tiles will be disabled. This can be useful in resource constrained environments, especially when using n_connections > 1, or when a tile provider's terms of use don't allow caching. Returns: parsed request input """ try: from samgis_lisa_on_cuda import contextily_tile from samgis_lisa_on_cuda.io.coordinates_pixel_conversion import _from4326_to3857 app_logger.info(f"connection number:{n_connections}, type:{type(n_connections)}.") app_logger.info(f"zoom:{zoom}, type:{type(zoom)}.") app_logger.debug(f"download raster from source:{source} with bounding box w:{w}, s:{s}, e:{e}, n:{n}.") app_logger.debug(f"types w:{type(w)}, s:{type(s)}, e:{type(e)}, n:{type(n)}.") downloaded_raster, bbox_raster = contextily_tile.bounds2img( w, s, e, n, zoom=zoom, source=source, ll=True, wait=wait, max_retries=max_retries, n_connections=n_connections, use_cache=use_cache) xp0, yp0 = _from4326_to3857(n, e) xp1, yp1 = _from4326_to3857(s, w) cropped_image_ndarray, cropped_transform = crop_raster(yp1, xp1, yp0, xp0, downloaded_raster, bbox_raster) return cropped_image_ndarray, cropped_transform except Exception as e_download_extent: app_logger.exception(f"e_download_extent:{e_download_extent}.", exc_info=True) raise e_download_extent def crop_raster(w: float, s: float, e: float, n: float, raster: ndarray, raster_bbox: TupleFloat, crs: str = OUTPUT_CRS_STRING, driver: str = DRIVER_RASTERIO_GTIFF) -> tuple_ndarray_transform: """ Crop a raster using given bounding box (w, s, e, n) values Args: w: cropping west edge s: cropping south edge e: cropping east edge n: cropping north edge raster: raster image to crop raster_bbox: bounding box of raster to crop crs: The coordinate reference system. Required in 'w' or 'w+' modes, it is ignored in 'r' or 'r+' modes. driver: A short format driver name (e.g. "GTiff" or "JPEG") or a list of such names (see GDAL docs at https://gdal.org/drivers/raster/index.html ). In 'w' or 'w+' modes a single name is required. In 'r' or 'r+' modes the driver can usually be omitted. Registered drivers will be tried sequentially until a match is found. When multiple drivers are available for a format such as JPEG2000, one of them can be selected by using this keyword argument. Returns: cropped raster with its Affine transform """ try: from rasterio.io import MemoryFile from rasterio.mask import mask as rio_mask from shapely.geometry import Polygon from geopandas import GeoSeries app_logger.debug(f"raster: type {type(raster)}, raster_ext:{type(raster_bbox)}, {raster_bbox}.") img_to_save, transform = get_transform_raster(raster, raster_bbox) img_height, img_width, number_bands = img_to_save.shape # https://rasterio.readthedocs.io/en/latest/topics/memory-files.html with MemoryFile() as rio_mem_file: app_logger.debug("writing raster in-memory to crop it with rasterio.mask.mask()") with rio_mem_file.open( driver=driver, height=img_height, width=img_width, count=number_bands, dtype=str(img_to_save.dtype.name), crs=crs, transform=transform, ) as src_raster_rw: for band in range(number_bands): src_raster_rw.write(img_to_save[:, :, band], band + 1) app_logger.debug("cropping raster in-memory with rasterio.mask.mask()") with rio_mem_file.open() as src_raster_ro: shapes_crop_polygon = Polygon([(n, e), (s, e), (s, w), (n, w), (n, e)]) shapes_crop = GeoSeries([shapes_crop_polygon]) app_logger.debug(f"cropping with polygon::{shapes_crop_polygon}.") cropped_image, cropped_transform = rio_mask(src_raster_ro, shapes=shapes_crop, crop=True) cropped_image_ndarray = reshape_as_image(cropped_image) app_logger.info(f"cropped image::{cropped_image_ndarray.shape}.") return cropped_image_ndarray, cropped_transform except Exception as e_crop_raster: try: app_logger.error(f"raster type:{type(raster)}.") app_logger.error(f"raster shape:{raster.shape}, dtype:{raster.dtype}.") except Exception as e_shape_dtype: app_logger.exception(f"raster shape or dtype not found:{e_shape_dtype}.", exc_info=True) app_logger.exception(f"e_crop_raster:{e_crop_raster}.", exc_info=True) raise e_crop_raster def get_transform_raster(raster: ndarray, raster_bbox: TupleFloat) -> tuple_ndarray_transform: """ Convert the input raster image to RGB and extract the Affine Args: raster: raster image to geo-reference raster_bbox: bounding box of raster to crop Returns: rgb raster image and its Affine transform """ try: from rasterio.transform import from_origin from numpy import array as np_array, linspace as np_linspace, uint8 as np_uint8 from PIL.Image import fromarray app_logger.debug(f"raster: type {type(raster)}, raster_ext:{type(raster_bbox)}, {raster_bbox}.") rgb = fromarray(np_uint8(raster)).convert('RGB') np_rgb = np_array(rgb) img_height, img_width, _ = np_rgb.shape min_x, max_x, min_y, max_y = raster_bbox app_logger.debug(f"raster rgb shape:{np_rgb.shape}, raster rgb bbox {raster_bbox}.") x = np_linspace(min_x, max_x, img_width) y = np_linspace(min_y, max_y, img_height) res_x = (x[-1] - x[0]) / img_width res_y = (y[-1] - y[0]) / img_height transform = from_origin(x[0] - res_x / 2, y[-1] + res_y / 2, res_x, res_y) return np_rgb, transform except Exception as e_get_transform_raster: app_logger.error(f"arguments raster: {type(raster)}, {raster}.") app_logger.error(f"arguments raster_bbox: {type(raster_bbox)}, {raster_bbox}.") app_logger.exception(f"e_get_transform_raster:{e_get_transform_raster}.", exc_info=True) raise e_get_transform_raster def reshape_as_image(arr): try: from numpy import swapaxes return swapaxes(swapaxes(arr, 0, 2), 0, 1) except Exception as e_reshape_as_image: app_logger.error(f"arguments: {type(arr)}, {arr}.") app_logger.exception(f"e_reshape_as_image:{e_reshape_as_image}.", exc_info=True) raise e_reshape_as_image