import json import os import pathlib import uuid import uvicorn from fastapi import FastAPI, HTTPException, Request, status from fastapi.exceptions import RequestValidationError from fastapi.responses import FileResponse, HTMLResponse, JSONResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from lisa_on_cuda.utils import app_helpers, frontend_builder, create_folders_and_variables_if_not_exists from pydantic import ValidationError from samgis_core.utilities.fastapi_logger import setup_logging from samgis_lisa_on_zero import PROJECT_ROOT_FOLDER, WORKDIR from samgis_lisa_on_zero.prediction_api.global_models import models_dict from samgis_lisa_on_zero.utilities.constants import LISA_INFERENCE_FN from samgis_lisa_on_zero.utilities.type_hints import ApiRequestBody, StringPromptApiRequestBody loglevel = os.getenv('LOGLEVEL', 'INFO').upper() app_logger = setup_logging(debug=loglevel) CUSTOM_GRADIO_PATH = "/" CUSTOM_STATIC_PATH = "/static" FASTAPI_TITLE = "samgis-lisa-on-zero" app = FastAPI(title=FASTAPI_TITLE, version="1.0") @app.middleware("http") async def request_middleware(request, call_next): request_id = str(uuid.uuid4()) with app_logger.contextualize(request_id=request_id): app_logger.info("Request started") try: response = await call_next(request) except Exception as ex: app_logger.error(f"Request failed: {ex}") response = JSONResponse(content={"success": False}, status_code=500) finally: response.headers["X-Request-ID"] = request_id app_logger.info("Request ended") return response @app.post("/post_test_dictlist") def post_test_dictlist2(request_input: ApiRequestBody) -> JSONResponse: from samgis_lisa_on_zero.io.wrappers_helpers import get_parsed_bbox_points_with_dictlist_prompt request_body = get_parsed_bbox_points_with_dictlist_prompt(request_input) app_logger.info(f"request_body:{request_body}.") return JSONResponse( status_code=200, content=request_body ) @app.get("/health") async def health() -> JSONResponse: import importlib.metadata from importlib.metadata import PackageNotFoundError core_version = lisa_on_cuda_version = samgis_lisa_on_cuda_version = "" try: core_version = importlib.metadata.version('samgis_core') lisa_on_cuda_version = importlib.metadata.version('lisa-on-cuda') samgis_lisa_on_cuda_version = importlib.metadata.version('samgis-lisa-on-cuda') except PackageNotFoundError as pe: app_logger.error(f"pe:{pe}.") msg = "still alive, " msg += f"""version:{samgis_lisa_on_cuda_version}, core version:{core_version},""" msg += f"""lisa-on-cuda version:{lisa_on_cuda_version},""" app_logger.info(msg) return JSONResponse(status_code=200, content={"msg": "still alive..."}) @app.post("/post_test_string") def post_test_string(request_input: StringPromptApiRequestBody) -> JSONResponse: from lisa_on_cuda.utils import app_helpers from samgis_lisa_on_zero.io.wrappers_helpers import get_parsed_bbox_points_with_string_prompt request_body = get_parsed_bbox_points_with_string_prompt(request_input) app_logger.info(f"request_body:{request_body}.") custom_args = app_helpers.parse_args([]) request_body["content"] = {**request_body, "precision": str(custom_args.precision)} return JSONResponse( status_code=200, content=request_body ) @app.post("/infer_lisa") def infer_lisa(request_input: StringPromptApiRequestBody) -> JSONResponse: from samgis_lisa_on_zero.prediction_api import lisa from samgis_lisa_on_zero.io.wrappers_helpers import get_parsed_bbox_points_with_string_prompt, get_source_name app_logger.info("starting lisa inference request...") try: import time time_start_run = time.time() body_request = get_parsed_bbox_points_with_string_prompt(request_input) app_logger.info(f"lisa body_request:{body_request}.") app_logger.info(f"lisa module:{lisa}.") try: source_name = get_source_name(request_input.source_type) app_logger.info(f"source_name = {source_name}.") output = lisa.lisa_predict( bbox=body_request["bbox"], prompt=body_request["prompt"], zoom=body_request["zoom"], source=body_request["source"], source_name=source_name, inference_function_name_key=LISA_INFERENCE_FN ) duration_run = time.time() - time_start_run app_logger.info(f"duration_run:{duration_run}.") body = { "duration_run": duration_run, "output": output } return JSONResponse(status_code=200, content={"body": json.dumps(body)}) except Exception as inference_exception: import subprocess project_root_folder_content = subprocess.run( f"ls -l {PROJECT_ROOT_FOLDER}/", shell=True, universal_newlines=True, stdout=subprocess.PIPE ) app_logger.error(f"project_root folder 'ls -l' command output: {project_root_folder_content.stdout}.") workdir_folder_content = subprocess.run( f"ls -l {WORKDIR}/", shell=True, universal_newlines=True, stdout=subprocess.PIPE ) app_logger.error(f"workdir folder 'ls -l' command output: {workdir_folder_content.stdout}.") app_logger.error(f"inference error:{inference_exception}.") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Internal server error on inference") except ValidationError as va1: app_logger.error(f"validation error: {str(va1)}.") raise ValidationError("Unprocessable Entity") @app.post("/infer_samgis") def infer_samgis(request_input: ApiRequestBody) -> JSONResponse: from samgis_lisa_on_zero.prediction_api import predictors from samgis_lisa_on_zero.io.wrappers_helpers import get_parsed_bbox_points_with_dictlist_prompt, get_source_name app_logger.info("starting plain samgis inference request...") try: import time time_start_run = time.time() body_request = get_parsed_bbox_points_with_dictlist_prompt(request_input) app_logger.info(f"body_request:{body_request}.") try: source_name = get_source_name(request_input.source_type) app_logger.info(f"source_name = {source_name}.") output = predictors.samexporter_predict( bbox=body_request["bbox"], prompt=body_request["prompt"], zoom=body_request["zoom"], source=body_request["source"], source_name=source_name ) duration_run = time.time() - time_start_run app_logger.info(f"duration_run:{duration_run}.") body = { "duration_run": duration_run, "output": output } return JSONResponse(status_code=200, content={"body": json.dumps(body)}) except Exception as inference_exception: import subprocess project_root_folder_content = subprocess.run( f"ls -l {PROJECT_ROOT_FOLDER}/", shell=True, universal_newlines=True, stdout=subprocess.PIPE ) app_logger.error(f"project_root folder 'ls -l' command output: {project_root_folder_content.stdout}.") workdir_folder_content = subprocess.run( f"ls -l {WORKDIR}/", shell=True, universal_newlines=True, stdout=subprocess.PIPE ) app_logger.error(f"workdir folder 'ls -l' command output: {workdir_folder_content.stdout}.") app_logger.error(f"inference error:{inference_exception}.") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Internal server error on inference") except ValidationError as va1: app_logger.error(f"validation error: {str(va1)}.") raise ValidationError("Unprocessable Entity") @app.exception_handler(RequestValidationError) async def request_validation_exception_handler(request: Request, exc: RequestValidationError) -> JSONResponse: app_logger.error(f"exception errors: {exc.errors()}.") app_logger.error(f"exception body: {exc.body}.") headers = request.headers.items() app_logger.error(f'request header: {dict(headers)}.') params = request.query_params.items() app_logger.error(f'request query params: {dict(params)}.') return JSONResponse( status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, content={"msg": "Error - Unprocessable Entity"} ) @app.exception_handler(HTTPException) async def http_exception_handler(request: Request, exc: HTTPException) -> JSONResponse: app_logger.error(f"exception: {str(exc)}.") headers = request.headers.items() app_logger.error(f'request header: {dict(headers)}.') params = request.query_params.items() app_logger.error(f'request query params: {dict(params)}.') return JSONResponse( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, content={"msg": "Error - Internal Server Error"} ) write_tmp_on_disk = os.getenv("WRITE_TMP_ON_DISK", "") app_logger.info(f"write_tmp_on_disk:{write_tmp_on_disk}.") if bool(write_tmp_on_disk): try: path_write_tmp_on_disk = pathlib.Path(write_tmp_on_disk) try: pathlib.Path.unlink(path_write_tmp_on_disk, missing_ok=True) except (IsADirectoryError, PermissionError, OSError) as err: app_logger.error(f"{err} while removing old write_tmp_on_disk:{write_tmp_on_disk}.") app_logger.error(f"is file?{path_write_tmp_on_disk.is_file()}.") app_logger.error(f"is symlink?{path_write_tmp_on_disk.is_symlink()}.") app_logger.error(f"is folder?{path_write_tmp_on_disk.is_dir()}.") os.makedirs(write_tmp_on_disk, exist_ok=True) app.mount("/vis_output", StaticFiles(directory=write_tmp_on_disk), name="vis_output") except RuntimeError as rerr: app_logger.error(f"{rerr} while loading the folder write_tmp_on_disk:{write_tmp_on_disk}...") raise rerr templates = Jinja2Templates(directory=WORKDIR / "static") @app.get("/vis_output", response_class=HTMLResponse) def list_files(request: Request): files = os.listdir(write_tmp_on_disk) files_paths = sorted([f"{request.url._url}/{f}" for f in files]) print(files_paths) return templates.TemplateResponse( "list_files.html", {"request": request, "files": files_paths} ) static_dist_folder = WORKDIR / "static" / "dist" frontend_builder.build_frontend( project_root_folder=frontend_builder.env_project_root_folder, input_css_path=frontend_builder.env_input_css_path, output_dist_folder=static_dist_folder ) create_folders_and_variables_if_not_exists.folders_creation() # important: the index() function and the app.mount MUST be at the end # samgis.html app.mount("/samgis", StaticFiles(directory=static_dist_folder, html=True), name="samgis") @app.get("/samgis") async def samgis() -> FileResponse: return FileResponse(path=static_dist_folder / "samgis.html", media_type="text/html") # lisa.html app.mount("/lisa", StaticFiles(directory=static_dist_folder, html=True), name="lisa") @app.get("/lisa") async def lisa() -> FileResponse: return FileResponse(path=static_dist_folder / "lisa.html", media_type="text/html") # # index.html (lisa.html copy) app.mount("/", StaticFiles(directory=static_dist_folder, html=True), name="index") @app.get("/") async def index() -> FileResponse: return FileResponse(path=static_dist_folder / "index.html", media_type="text/html") lisa.load_model_and_inference_fn(LISA_INFERENCE_FN) inference_fn = models_dict[LISA_INFERENCE_FN]["inference"] io = app_helpers.get_gradio_interface(inference_fn) app_logger.info("mounting gradio app within FastAPI...") if __name__ == '__main__': try: uvicorn.run(host="0.0.0.0", port=7860, app=app) except Exception as e: app_logger.error("e:", e) raise e