File size: 3,311 Bytes
6f2f547
4d26ef2
6f2f547
4d26ef2
6f2f547
4d26ef2
 
 
 
 
6f2f547
 
 
 
 
 
 
 
 
4d26ef2
 
 
 
 
 
 
 
 
 
 
5a246f7
4d26ef2
 
6f2f547
 
 
 
 
 
 
 
 
 
 
4d26ef2
6f2f547
 
 
4d26ef2
6f2f547
 
 
4d26ef2
6f2f547
 
 
6c70a52
 
 
4d26ef2
3041467
 
 
6c70a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d26ef2
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""handle geo-referenced raster images"""
from pathlib import Path
from typing import List, Tuple, Dict

from affine import Affine
import numpy as np

from src import app_logger, PROJECT_ROOT_FOLDER


def load_affine_transformation_from_matrix(matrix_source_coeffs: List[float]) -> Affine:
    """wrapper for rasterio Affine from_gdal method

    Args:
        matrix_source_coeffs: 6 floats ordered by GDAL.

    Returns:
        Affine: Affine transform
    """

    if len(matrix_source_coeffs) != 6:
        raise ValueError(f"Expected 6 coefficients, found {len(matrix_source_coeffs)}; "
                         f"argument type: {type(matrix_source_coeffs)}.")

    try:
        a, d, b, e, c, f = (float(x) for x in matrix_source_coeffs)
        center = tuple.__new__(Affine, [a, b, c, d, e, f, 0.0, 0.0, 1.0])
        return center * Affine.translation(-0.5, -0.5)
    except Exception as e:
        app_logger.error(f"exception:{e}, check https://github.com/rasterio/affine project for updates")
        raise e


def get_affine_transform_from_gdal(matrix_source_coeffs: List[float]) -> Affine:
    """wrapper for rasterio Affine from_gdal method

    Args:
        matrix_source_coeffs: 6 floats ordered by GDAL.

    Returns:
        Affine: Affine transform
    """
    return Affine.from_gdal(*matrix_source_coeffs)


def get_vectorized_raster_as_geojson(mask: np.ndarray, matrix: Tuple[float]) -> Dict[str, int]:
    """
        Parse the input request lambda event.

        Args:
            mask: numpy mask
            matrix: tuple of float to transform into an Affine transform

        Returns:
            Dict: dict containing the output geojson and the predictions number
    """
    try:
        from rasterio.features import shapes
        from geopandas import GeoDataFrame

        transform = get_affine_transform_from_gdal(matrix)
        app_logger.info(f"transform to consume with rasterio.shapes: {type(transform)}, {transform}.")

        # mask = band != 0
        shapes_generator = ({
            'properties': {'raster_val': v}, 'geometry': s}
            for i, (s, v)
            # in enumerate(shapes(mask, mask=(band != 0), transform=rio_src.transform))
            # use mask=None to avoid using source
            in enumerate(shapes(mask, mask=None, transform=transform))
        )
        app_logger.info(f"created shapes_generator, transform it to a polygon list...")
        shapes_list = list(shapes_generator)
        app_logger.info(f"created {len(shapes_list)} polygons.")
        gpd_polygonized_raster = GeoDataFrame.from_features(shapes_list, crs="EPSG:3857")
        app_logger.info(f"created a GeoDataFrame, export to geojson...")
        geojson = gpd_polygonized_raster.to_json(to_wgs84=True)
        app_logger.info(f"created geojson, preparing API response...")
        return {
            "geojson": geojson,
            "n_shapes_geojson": len(shapes_list)
        }
    except Exception as e_shape_band:
        app_logger.error(f"e_shape_band:{e_shape_band}.")
        raise e_shape_band


if __name__ == '__main__':
    npy_file = "prediction_masks_46.27697017893455_9.616470336914064_46.11441972281433_9.264907836914064.npy"
    prediction_masks = np.load(Path(PROJECT_ROOT_FOLDER) / "tmp" / "try_by_steps" / "t0" / npy_file)

    print("#")