File size: 21,342 Bytes
6d1f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
"""Helpers dedicated to georeferencing duties"""
import base64
import glob
import json
import os
import zlib
from math import log, tan, radians, cos, pi, floor, degrees, atan, sinh

import rasterio

from src import app_logger
from src.utilities.constants import GEOJSON_SQUARE_TEMPLATE, OUTPUT_CRS_STRING, INPUT_CRS_STRING, SKIP_CONDITIONS_LIST
from src.utilities.type_hints import ts_llist_float2, ts_geojson, ts_dict_str2b, ts_tuple_flat2, ts_tuple_flat4, \
    ts_list_float4, ts_llist2, ts_tuple_int4, ts_ddict2

ZIPJSON_KEY = 'base64(zip(o))'


def get_geojson_square_angles(bounding_box:ts_llist_float2, name:str="buffer", debug:bool=False) -> ts_geojson:
    """
    Create a geojson-like dict rectangle from the input latitude/longitude bounding box
    
    Args:
        bounding_box: float latitude/longitude bounding box
        name: geojson-like rectangle name
        debug: bool, default=False
            logging debug argument

    Returns:
        dict: geojson-like object rectangle
        
    """
    import copy
    #from src.surferdtm_prediction_api.utilities.utilities import setup_logging

    #app_logger = setup_logging(debug)
    app_logger.info(f"bounding_box:{bounding_box}.")
    top = bounding_box[0][0]
    right = bounding_box[0][1]
    bottom = bounding_box[1][0]
    left = bounding_box[1][1]
    bottom_left = [left, bottom]
    top_left = [left, top]
    top_right = [right, top]
    bottom_right = [right, bottom]
    coords = [bottom_left, top_left, top_right, bottom_right]
    app_logger.info(f"coords:{coords}.")
    geojson = copy.copy(GEOJSON_SQUARE_TEMPLATE)
    geojson["name"] = name
    geojson["features"][0]["geometry"]["coordinates"] = [[coords]]
    app_logger.info(f"geojson:{geojson}.")
    return geojson


def crop_raster(merged_raster_path:str, area_crop_geojson:dict, debug:bool=False) -> ts_dict_str2b:
    """
    Crop a raster using a geojson-like object rectangle
    
    Args:
        merged_raster_path: filename path pointing string to the raster to crop
        area_crop_geojson: geojson-like object rectangle
        debug: bool, default=False
            logging debug argument

    Returns:
        dict: the cropped raster numpy array and the transform object with the georeferencing reference

    """
    #from src.surferdtm_prediction_api.utilities.utilities import setup_logging

    #app_logger = setup_logging(debug)
    try:
        import rasterio
        from rasterio.mask import mask

        app_logger.info(f"area_crop_geojson::{area_crop_geojson}.")
        geojson_reprojected = get_geojson_reprojected(area_crop_geojson, debug=debug)
        shapes = [feature["geometry"] for feature in geojson_reprojected["features"]]
        app_logger.info(f"geojson_reprojected:{geojson_reprojected}.")

        app_logger.info(f"reading merged_raster_path while masking it from path:{merged_raster_path}.")
        with rasterio.open(merged_raster_path, "r") as src:
            masked_raster, masked_transform = mask(src, shapes, crop=True)
            masked_meta = src.meta
            app_logger.info(f"merged_raster_path, src:{src}.")
        masked_meta.update({
            "driver": "GTiff", "height": masked_raster.shape[1],
            "width": masked_raster.shape[2], "transform": masked_transform}
        )
        return {"masked_raster": masked_raster, "masked_meta": masked_meta, "masked_transform": masked_transform}
    except Exception as e:
        app_logger.error(e)
        raise e


def get_geojson_reprojected(geojson:dict, output_crs:str=OUTPUT_CRS_STRING, debug:bool=False) -> dict:
    """
    change projection for input geojson-like object polygon

    Args:
        geojson: input geojson-like object polygon
        output_crs: output crs string - Coordinate Reference Systems
        debug: logging debug argument

    Returns:
        dict: reprojected geojson-like object

    """
    #from src.surferdtm_prediction_api.utilities.utilities import setup_logging

    #app_logger = setup_logging(debug)
    if not isinstance(geojson, dict):
        raise ValueError(f"geojson here should be a dict, not of type {type(geojson)}.")
    app_logger.info(f"start reprojecting geojson:{geojson}.")
    try:
        features = geojson['features']

        output_crs_json = {"type": "name", "properties": {"name": f"urn:ogc:def:crs:{output_crs}"}}
        geojson_output = {'features': [], 'type': 'FeatureCollection', "name": "converted", "crs": output_crs_json}

        # Iterate through each feature of the feature collection
        for feature in features:
            feature_out = feature.copy()
            new_coords = []
            feat = feature['geometry']
            app_logger.info(f"feat:{feat}.")
            coords = feat['coordinates']
            app_logger.info(f"coordinates:{coords}.")
            # iterate over "coordinates" lists with 3 nested loops, practically with only one element but last loop
            for coord_a in coords:
                new_coords_a = []
                for cord_b in coord_a:
                    new_coords_b = []
                    # Project/transform coordinate pairs of each ring
                    # (iteration required in case geometry type is MultiPolygon, or there are holes)
                    for xconv, yconf in cord_b:
                        app_logger.info(f"xconv, yconf:{xconv},{yconf}.")
                        x2, y2 = latlon_to_mercator(xconv, yconf)
                        app_logger.info(f"x2, y2:{x2},{y2}.")
                        new_coords_b.append([x2, y2])
                    new_coords_a.append(new_coords_b)
                new_coords.append(new_coords_a)
            feature_out['geometry']['coordinates'] = new_coords
            geojson_output['features'].append(feature_out)
        app_logger.info(f"geojson_output:{geojson_output}.")
        return geojson_output
    except KeyError as ke_get_geojson_reprojected:
        msg = f"ke_get_geojson_reprojected:{ke_get_geojson_reprojected}."
        app_logger.error(msg)
        raise KeyError(msg)


def latlon_to_mercator(
        lat:float, lon:float, input_crs:str=INPUT_CRS_STRING, output_crs:str=OUTPUT_CRS_STRING, always_xy:bool=True, debug:bool=False
) -> ts_tuple_flat2:
    """
    Return a tuple of latitude, longitude float coordinates values transformed to mercator

    Args:

        lat: input latitude float value
        lon: input longitude float value
        input_crs: string, input Coordinate Reference Systems
        output_crs: string, output Coordinate Reference Systems
        always_xy: bool, default=True. 
            If true, the transform method will accept as input and return as output
            coordinates using the traditional GIS order, that is longitude, latitude
            for geographic CRS and easting, northing for most projected CRS.
        debug: bool, default=False.
            logging debug argument

    Returns:
        tuple latitude/longitude float values

    """
    #from src.surferdtm_prediction_api.utilities.utilities import setup_logging
    #app_logger = setup_logging(debug)
    try:
        from pyproj import Transformer
        app_logger.info(f"lat:{lat},lon:{lon}.")
        transformer = Transformer.from_crs(input_crs, output_crs, always_xy=always_xy)
        out_lat, out_lon = transformer.transform(lat, lon)
        app_logger.info(f"out_lat:{out_lat},out_lon:{out_lon}.")
        return out_lat, out_lon
    except Exception as e_latlon_to_mercator:
        app_logger.error(f"e_latlon_to_mercator:{e_latlon_to_mercator}.")
        raise e_latlon_to_mercator


def sec(x:float) -> float:
    """
    Return secant (the reciprocal of the cosine) for given value

    Args:
        x: input float value

    Returns:
        float: secant of given float value

    """
    return 1 / cos(x)


def latlon_to_xyz(lat:float, lon:float, z:int) -> ts_tuple_flat2:
    """
    Return x/y coordinates points for tiles from latitude/longitude values point.

    Args:
        lon: float longitude value
        lat: float latitude value
        z: float zoom value

    Returns:
        tuple: x, y values tiles coordinates

    """
    tile_count = pow(2, z)
    x = (lon + 180) / 360
    y = (1 - log(tan(radians(lat)) + sec(radians(lat))) / pi) / 2
    return tile_count * x, tile_count * y


def bbox_to_xyz(lon_min:float, lon_max:float, lat_min:float, lat_max:float, z:int) -> ts_tuple_flat4:
    """
    Return xyz reference coordinates for tiles from latitude/longitude min and max values.

    Args:
        lon_min: float min longitude value
        lon_max: float max longitude value
        lat_min: float min latitude value
        lat_max: float max latitude value
        z: float zoom value

    Returns:
        tuple: float x min, x max, y min, y max values tiles coordinates

    """
    x_min, y_max = latlon_to_xyz(lat_min, lon_min, z)
    x_max, y_min = latlon_to_xyz(lat_max, lon_max, z)
    return (floor(x_min), floor(x_max),
            floor(y_min), floor(y_max))


def mercator_to_lat(mercator_y:float) -> float:
    """
    Return latitude value coordinate from mercator coordinate value

    Args:
        mercator_y: float mercator value coordinate

    Returns:
        float: latitude value coordinate

    """
    return degrees(atan(sinh(mercator_y)))


def y_to_lat_edges(y:float, z:int) -> ts_tuple_flat2:
    """
    Return edge float latitude values coordinates from x,z tiles coordinates

    Args:
        y: float x tile value coordinate
        z: float zoom tile value coordinate

    Returns:
        tuple: two float latitude values coordinates

    """
    tile_count = pow(2, z)
    unit = 1 / tile_count
    relative_y1 = y * unit
    relative_y2 = relative_y1 + unit
    lat1 = mercator_to_lat(pi * (1 - 2 * relative_y1))
    lat2 = mercator_to_lat(pi * (1 - 2 * relative_y2))
    return lat1, lat2


def x_to_lon_edges(x:float, z:int) -> ts_tuple_flat2:
    """
    Return edge float longitude values coordinates from x,z tiles coordinates

    Args:
        x: float x tile value coordinate
        z: float zoom tile value coordinate

    Returns:
        tuple: two float longitude values coordinates

    """
    tile_count = pow(2, z)
    unit = 360 / tile_count
    lon1 = -180 + x * unit
    lon2 = lon1 + unit
    return lon1, lon2


def tile_edges(x:float, y:float, z:int) -> ts_list_float4:
    """
    Return edge float latitude/longitude value coordinates from xyz tiles coordinates

    Args:
        x: float x tile value coordinate
        y: float y tile value coordinate
        z: float zoom tile value coordinate

    Returns:
        tuple: float latitude/longitude values coordinates

    """
    lat1, lat2 = y_to_lat_edges(y, z)
    lon1, lon2 = x_to_lon_edges(x, z)
    return [lon1, lat1, lon2, lat2]


def merge_tiles(input_pattern:str, output_path:str, temp_dir:str, debug:bool=False) -> None:
    """
    Merge given raster glob input pattern into one unique georeferenced raster.

    Args:
        input_pattern: input glob pattern needed for search the raster filenames
        output_path: output path where to write the merged raster
        temp_dir: temporary folder needed for create
        debug: bool, default=False.
            logging debug argument

    """
    #from src.surferdtm_prediction_api.utilities.utilities import setup_logging

    #app_logger = setup_logging(debug)
    try:
        from osgeo import gdal
    except ModuleNotFoundError as module_error_merge_tiles:
        msg = f"module_error_merge_tiles:{module_error_merge_tiles}."
        app_logger.error(msg)
        raise module_error_merge_tiles

    try:
        vrt_path = os.path.join(temp_dir, "tiles.vrt")
        os_list_dir1 = os.listdir(temp_dir)
        app_logger.info(f"os_list_dir1:{os_list_dir1}.")

        gdal.BuildVRT(vrt_path, glob.glob(input_pattern))
        gdal.Translate(output_path, vrt_path)

        os_list_dir2 = os.listdir(temp_dir)
        app_logger.info(f"os_list_dir2:{os_list_dir2}.")
    except IOError as ioe_merge_tiles:
        msg = f"ioe_merge_tiles:{ioe_merge_tiles}."
        app_logger.error(msg)
        raise ioe_merge_tiles


def get_lat_lon_coords(bounding_box: ts_llist2) -> ts_tuple_int4:
    """
    Return couples of float latitude/longitude values from bounding box input list.

    Args:
        bounding_box: bounding box input list of latitude/longitude coordinates

    Returns:
        tuple: float longitude min, latitude min, longitude max, longitude max values coordinates

    """
    top_right, bottom_left = bounding_box
    lat_max, lon_max = top_right
    lat_min, lon_min = bottom_left
    if lon_min == lon_max or lat_min == lat_max:
        raise ValueError(f"latitude and/or longitude coordinates should not be equal each others... {bounding_box}.")
    return lon_min, lat_min, lon_max, lat_max


def get_prediction_georeferenced(prediction_obj:dict, transform:rasterio.transform, skip_conditions_list:list=None, debug:bool=False) -> dict:
    """
    Return a georeferenced geojson-like object starting from a dict containing "predictions" -> "points" list.
    Apply the affine transform matrix of georeferenced raster submitted to the machine learning model.  

    Args:
        prediction_obj: input dict 
        transform: 'rasterio.transform' or dict list, affine tranform matrix
        skip_conditions_list: dict list, skip condition list
        debug: bool, default=False.
            logging debug argument

    Returns:
        dict

    """
    #from src.surferdtm_prediction_api.utilities.utilities import setup_logging

    if skip_conditions_list is None:
        skip_conditions_list = SKIP_CONDITIONS_LIST

    #app_logger = setup_logging(debug)
    app_logger.info(f"prediction_obj::{prediction_obj}, transform::{transform}.")
    crs = {"type": "name", "properties": {"name": "urn:ogc:def:crs:EPSG::3857"}}
    geojson_obj = {'features': [], 'type': 'FeatureCollection', "name": "geojson_name", "crs": crs}
    for n, prediction in enumerate(prediction_obj["predictions"]):
        points_dict_ = prediction["points"]
        points_list = [[p["x"], p["y"]] for p in points_dict_]
        app_logger.info(f"points_list::{points_list}.")
        # if check_skip_conditions(prediction, skip_conditions_list, debug=debug):
        #     continue
        feature = populate_features_geojson(n, points_list, confidence=prediction["confidence"], geomorphic_class=prediction["class"])
        app_logger.info(f"geojson::feature:{feature}.")
        feature["geometry"] = apply_transform(feature["geometry"], transform, debug=debug)
        geojson_obj["features"].append(feature)
    app_logger.info(f"geojson::post_update:{geojson_obj}.")
    return geojson_obj


def populate_features_geojson(idx: int, coordinates_list: list, **kwargs) -> ts_ddict2:
    """
    Return a list of coordinate points in a geojson-like feature-like object.

    Args:
        idx: int, feature index
        coordinates_list: dict list, coordinate points
        **kwargs: optional arguments to merge within the geojson properties feature

    Returns:
        dict

    """
    return {
        "type": "Feature",
        "properties": {"id": idx, **kwargs},
        "geometry": {
            "type": "MultiPolygon",
            "coordinates": [[coordinates_list]],
        }
    }


def check_skip_conditions(prediction:dict, skip_conditions_list:list, debug:bool=False) -> bool:
    """
    Loop over elements within skip_condition_list and return a boolean if no condition to skip (or exceptions).

    Args:
        prediction: input dict to check
        skip_conditions_list: dict list with conditions to evaluate
        debug: bool, default=False
            logging debug argument

    Returns:
        bool

    """
    for obj in skip_conditions_list:
        return skip_feature(prediction, obj["skip_key"], obj["skip_value"], obj["skip_condition"], debug=debug)
    return False


def skip_feature(prediction:dict, skip_key:float, skip_value:str, skip_condition:str, debug:bool=False) -> bool:
    """
    Return False if values from input dict shouldn't be skipped,
    True in case of exceptions, empty skip_condition or when chosen condition meets skip_value and skip_condition.

    E.g. confidence should be major than 0.8: if confidence is equal to 0.65 then return True (0.65 < 0.8) and skip!

    Args:
        prediction: input dict to check
        skip_key: skip condition key string
        skip_value: skip condition value string
        skip_condition: string (major | minor | equal)
        debug: bool, default=False
            logging debug argument

    Returns:
        bool

    """
    #from src.surferdtm_prediction_api.utilities.utilities import setup_logging
    #app_logger = setup_logging(debug)
    try:
        v = prediction[skip_key]
        match skip_condition:
            case "major":
                return v > skip_value
            case "minor":
                return v < skip_value
            case "equal":
                return v == skip_value
            case "":
                return False
    except KeyError as ke_filter_feature:
        app_logger.error(f"ke_filter_feature:{ke_filter_feature}.")
        return False
    except Exception as e_filter_feature:
        app_logger.error(f"e_filter_feature:{e_filter_feature}.")
        return False


def apply_transform(geometry:object, transform:list[object], debug:bool=False) -> dict:
    """
    Returns a GeoJSON-like mapping from a transformed geometry using an affine transformation matrix.

    The coefficient matrix is provided as a list or tuple with 6 items
    for 2D transformations. The 6 parameter matrix is::

        [a, b, d, e, xoff, yoff]

    which represents the augmented matrix::

        [x']   / a  b xoff \ [x]
        [y'] = | d  e yoff | [y]
        [1 ]   \ 0  0   1  / [1]

    or the equations for the transformed coordinates::

        x' = a * x + b * y + xoff
        y' = d * x + e * y + yoff

    Args:
        geometry: geometry value from a geojson dict
        transform: list of float values (affine transformation matrix)
        debug: bool, default=False
            logging debug argument

    Returns:
        dict

    """
    #from src.surferdtm_prediction_api.utilities.utilities import setup_logging

    #app_logger = setup_logging(debug)

    try:
        from shapely.affinity import affine_transform
        from shapely.geometry import mapping, shape
        try:
            geometry_transformed = affine_transform(shape(geometry), [transform.a, transform.b, transform.d, transform.e, transform.xoff, transform.yoff])
        except AttributeError as ae:
            app_logger.warning(f"ae:{ae}.")
            geometry_transformed = affine_transform(shape(geometry), [transform[0], transform[1], transform[2], transform[3], transform[4], transform[5]])
        geometry_serialized = mapping(geometry_transformed)
        app_logger.info(f"geometry_serialized:{geometry_serialized}.")
        return geometry_serialized
    except ImportError as ie_apply_transform:
        app_logger.error(f"ie_apply_transform:{ie_apply_transform}.")
        raise ie_apply_transform
    except Exception as e_apply_transform:
        app_logger.error(f"e_apply_transform:{e_apply_transform}.")
        raise e_apply_transform


def get_perc(nan_count:int, total_count:int) -> str:
    """
    Return a formatted string with a percentage value representing the ratio between NaN and total number elements within a numpy array

    Args:
        nan_count: NaN value elements
        total_count: total count of elements

    Returns:
        str

    """
    return f"{100*nan_count/total_count:.2f}"


def json_unzip(j:dict, debug:bool=False) -> str:
    """
    Return uncompressed content from input dict using 'zlib' library

    Args:
        j: input dict to uncompress. key must be 'base64(zip(o))'
        debug: logging debug argument

    Returns:
        dict: uncompressed dict

    """
    from json import JSONDecodeError
    from zlib import error as zlib_error

    #from src.surferdtm_prediction_api.utilities.utilities import setup_logging

    #app_logger = setup_logging(debug)

    try:
        j = zlib.decompress(base64.b64decode(j[ZIPJSON_KEY]))
    except KeyError as ke:
        ke_error_msg = f"Could not decode/unzip the content because of wrong/missing dict key:{ke}."
        raise KeyError(ke_error_msg)
    except zlib_error as zlib_error2:
        zlib_error2_msg = f"Could not decode/unzip the content because of:{zlib_error2}."
        app_logger.error(zlib_error2_msg)
        raise RuntimeError(zlib_error2_msg)

    try:
        j = json.loads(j)
    except JSONDecodeError as json_e1:
        msg = f"Could interpret the unzipped content because of JSONDecodeError with msg:{json_e1.msg}, pos:{json_e1.pos}, broken json:'{json_e1.doc}'"
        app_logger.error(msg)
        raise RuntimeError(msg)

    return j


def json_zip(j:dict) -> dict[str]:
    """
    Return compressed content from input dict using 'zlib' library

    Args:
        j: input dict to compress

    Returns:
        dict: compressed dict

    """
    return {
        ZIPJSON_KEY: base64.b64encode(
            zlib.compress(
                json.dumps(j).encode('utf-8')
            )
        ).decode('ascii')
    }