File size: 8,489 Bytes
fa76f5f 6d1f220 43d87b3 fa76f5f 6d1f220 fa76f5f 6d1f220 fa76f5f 6d1f220 fa76f5f 43d87b3 fa76f5f 43d87b3 fa76f5f 2f5b9e0 6d1f220 fa76f5f 2f5b9e0 43d87b3 2f5b9e0 43d87b3 6d1f220 43d87b3 6d1f220 43d87b3 6d1f220 43d87b3 6d1f220 9271aef 6d1f220 b241742 6d1f220 43d87b3 6d1f220 2f5b9e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Press the green button in the gutter to run the script.
import json
from pathlib import Path
from typing import List
import numpy as np
import rasterio
from PIL import Image
from src import app_logger, MODEL_FOLDER
from src.io.tiles_to_tiff import convert
from src.io.tms2geotiff import save_geotiff_gdal
from src.prediction_api.sam_onnx import SegmentAnythingONNX
from src.utilities.constants import MODEL_ENCODER_NAME, ZOOM, MODEL_DECODER_NAME, ROOT
from src.utilities.serialize import serialize
models_dict = {"fastsam": {"instance": None}}
def zip_arrays(arr1, arr2):
try:
arr1_list = arr1.tolist()
arr2_list = arr2.tolist()
# return {serialize(k): serialize(v) for k, v in zip(arr1_list, arr2_list)}
d = {}
for n1, n2 in zip(arr1_list, arr2_list):
app_logger.info(f"n1:{n1}, type {type(n1)}, n2:{n2}, type {type(n2)}.")
n1f = str(n1)
n2f = str(n2)
app_logger.info(f"n1:{n1}=>{n1f}, n2:{n2}=>{n2f}.")
d[n1f] = n2f
app_logger.info(f"zipped dict:{d}.")
return d
except Exception as e_zip_arrays:
app_logger.info(f"exception zip_arrays:{e_zip_arrays}.")
return {}
def load_affine_transformation_from_matrix(matrix_source_coeffs: List):
from affine import Affine
if len(matrix_source_coeffs) != 6:
raise ValueError(f"Expected 6 coefficients, found {len(matrix_source_coeffs)}; argument type: {type(matrix_source_coeffs)}.")
try:
a, d, b, e, c, f = (float(x) for x in matrix_source_coeffs)
center = tuple.__new__(Affine, [a, b, c, d, e, f, 0.0, 0.0, 1.0])
return center * Affine.translation(-0.5, -0.5)
except Exception as e:
app_logger.error(f"exception:{e}, check https://github.com/rasterio/affine project for updates")
def samexporter_predict(bbox, prompt: list[dict], zoom: float = ZOOM, model_name: str = "fastsam") -> dict:
try:
from rasterio.features import shapes
from geopandas import GeoDataFrame
if models_dict[model_name]["instance"] is None:
app_logger.info(f"missing instance model {model_name}, instantiating it now")
model_instance = SegmentAnythingONNX(
encoder_model_path=MODEL_FOLDER / MODEL_ENCODER_NAME,
decoder_model_path=MODEL_FOLDER / MODEL_DECODER_NAME
)
models_dict[model_name]["instance"] = model_instance
app_logger.info(f"using a {model_name} instance model...")
models_instance = models_dict[model_name]["instance"]
img, matrix = convert(
bounding_box=bbox,
zoom=int(zoom)
)
pt0, pt1 = bbox
rio_output = f"/tmp/downloaded_rio_{pt0[0]}_{pt0[1]}_{pt1[0]}_{pt1[1]}.tif"
save_geotiff_gdal(img, rio_output, matrix)
app_logger.info(f"saved downloaded geotiff image to {rio_output}...")
np_img = np.array(img)
app_logger.info(f"## img type {type(np_img)}, prompt:{prompt}.")
app_logger.info(f"onnxruntime input shape/size (shape if PIL) {np_img.size},"
f"start to initialize SamGeo instance:")
try:
app_logger.info(f"onnxruntime input shape (NUMPY) {np_img.shape}.")
except Exception as e_shape:
app_logger.error(f"e_shape:{e_shape}.")
app_logger.info(f"use {model_name} model, ENCODER model {MODEL_ENCODER_NAME} and"
f" {MODEL_DECODER_NAME} from {MODEL_FOLDER}): model instantiated, creating embedding...")
embedding = models_instance.encode(np_img)
app_logger.info(f"embedding created, running predict_masks...")
prediction_masks = models_instance.predict_masks(embedding, prompt)
app_logger.info(f"predict_masks terminated...")
app_logger.info(f"predict_masks terminated, prediction masks shape:{prediction_masks.shape}, {prediction_masks.dtype}.")
pt0, pt1 = bbox
prediction_masks_output = f"/tmp/prediction_masks_{pt0[0]}_{pt0[1]}_{pt1[0]}_{pt1[1]}.npy"
np.save(
prediction_masks_output,
prediction_masks, allow_pickle=True, fix_imports=True
)
app_logger.info(f"saved prediction_masks:{prediction_masks_output}.")
mask = np.zeros((prediction_masks.shape[2], prediction_masks.shape[3]), dtype=np.uint8)
app_logger.info(f"output mask shape:{mask.shape}, {mask.dtype}.")
for n, m in enumerate(prediction_masks[0, :, :, :]):
app_logger.info(f"## {n} mask => m shape:{mask.shape}, {mask.dtype}.")
mask[m > 0.0] = 255
# prediction_masks0 = prediction_masks[0]
# app_logger.info(f"prediction_masks0 shape:{prediction_masks0.shape}.")
#
# try:
# pmf = np.sum(prediction_masks0, axis=0).astype(np.uint8)
# except Exception as e_sum_pmf:
# app_logger.error(f"e_sum_pmf:{e_sum_pmf}.")
# pmf = prediction_masks0[0]
# app_logger.info(f"creating pil image from prediction mask with shape {pmf.shape}.")
# pil_pmf = Image.fromarray(pmf)
# pil_pmf_output = f"/tmp/pil_pmf_{pmf.shape[0]}_{pmf.shape[1]}.png"
# pil_pmf.save(pil_pmf_output)
# app_logger.info(f"saved pil_pmf:{pil_pmf_output}.")
#
# mask = np.zeros(pmf.shape, dtype=np.uint8)
# mask[pmf > 0] = 255
# cv2.imwrite(f"/tmp/cv2_mask_predicted_{mask.shape[0]}_{mask.shape[1]}_{mask.shape[2]}.png", mask)
pil_mask = Image.fromarray(mask)
pil_mask_predicted_output = f"/tmp/pil_mask_predicted_{mask.shape[0]}_{mask.shape[1]}.png"
pil_mask.save(pil_mask_predicted_output)
app_logger.info(f"saved pil_mask_predicted:{pil_mask_predicted_output}.")
mask_unique_values, mask_unique_values_count = serialize(np.unique(mask, return_counts=True))
app_logger.info(f"mask_unique_values:{mask_unique_values}.")
app_logger.info(f"mask_unique_values_count:{mask_unique_values_count}.")
app_logger.info(f"read geotiff:{rio_output}: create shapes_generator...")
# app_logger.info(f"image/geojson transform:{transform}: create shapes_generator...")
with rasterio.open(rio_output, "r", driver="GTiff") as rio_src:
band = rio_src.read()
try:
transform = load_affine_transformation_from_matrix(matrix)
app_logger.info(f"geotiff band:{band.shape}, type: {type(band)}, dtype: {band.dtype}.")
app_logger.info(f"geotiff band:{mask.shape}.")
app_logger.info(f"transform from matrix:{transform}.")
app_logger.info(f"rio_src crs:{rio_src.crs}.")
app_logger.info(f"rio_src transform:{rio_src.transform}.")
except Exception as e_shape_band:
app_logger.error(f"e_shape_band:{e_shape_band}.")
raise e_shape_band
# mask_band = band != 0
shapes_generator = ({
'properties': {'raster_val': v}, 'geometry': s}
for i, (s, v)
# in enumerate(shapes(mask, mask=(band != 0), transform=rio_src.transform))
# use mask=None to avoid using source
in enumerate(shapes(mask, mask=None, transform=rio_src.transform))
)
app_logger.info(f"created shapes_generator.")
shapes_list = list(shapes_generator)
app_logger.info(f"created {len(shapes_list)} polygons.")
gpd_polygonized_raster = GeoDataFrame.from_features(shapes_list, crs="EPSG:3857")
app_logger.info(f"created a GeoDataFrame...")
geojson = gpd_polygonized_raster.to_json(to_wgs84=True)
app_logger.info(f"created geojson...")
output_geojson = str(Path(ROOT) / "geojson_output.json")
with open(output_geojson, "w") as jj_out:
app_logger.info(f"writing geojson file to {output_geojson}.")
json.dump(json.loads(geojson), jj_out)
app_logger.info(f"geojson file written to {output_geojson}.")
return {
"geojson": geojson,
"n_shapes_geojson": len(shapes_list),
"n_predictions": len(prediction_masks),
# "n_pixels_predictions": zip_arrays(mask_unique_values, mask_unique_values_count),
}
except ImportError as e:
app_logger.error(f"Error trying import module:{e}.")
|