File size: 8,389 Bytes
fa76f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d1f220
 
5b88544
6d1f220
 
 
 
 
 
 
 
 
 
 
 
 
 
fa76f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d1f220
 
 
 
 
 
 
 
 
 
 
 
 
 
fa76f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from copy import deepcopy

import cv2
import numpy as np
import onnxruntime

from src import app_logger


class SegmentAnythingONNX:
    """Segmentation model using SegmentAnything"""

    def __init__(self, encoder_model_path, decoder_model_path) -> None:
        self.target_size = 1024
        self.input_size = (684, 1024)

        # Load models
        providers = onnxruntime.get_available_providers()

        # Pop TensorRT Runtime due to crashing issues
        # TODO: Add back when TensorRT backend is stable
        providers = [p for p in providers if p != "TensorrtExecutionProvider"]

        if providers:
            app_logger.info(
                "Available providers for ONNXRuntime: %s", ", ".join(providers)
            )
        else:
            app_logger.warning("No available providers for ONNXRuntime")
        self.encoder_session = onnxruntime.InferenceSession(
            encoder_model_path, providers=providers
        )
        self.encoder_input_name = self.encoder_session.get_inputs()[0].name
        self.decoder_session = onnxruntime.InferenceSession(
            decoder_model_path, providers=providers
        )

    @staticmethod
    def get_input_points(prompt):
        """Get input points"""
        points = []
        labels = []
        for mark in prompt:
            if mark["type"] == "point":
                points.append(mark["data"])
                labels.append(mark["label"])
            elif mark["type"] == "rectangle":
                points.append([mark["data"][0], mark["data"][1]])  # top left
                points.append(
                    [mark["data"][2], mark["data"][3]]
                )  # bottom right
                labels.append(2)
                labels.append(3)
        points, labels = np.array(points), np.array(labels)
        return points, labels

    def run_encoder(self, encoder_inputs):
        """Run encoder"""
        output = self.encoder_session.run(None, encoder_inputs)
        image_embedding = output[0]
        return image_embedding

    @staticmethod
    def get_preprocess_shape(old_h: int, old_w: int, long_side_length: int):
        """
        Compute the output size given input size and target long side length.
        """
        scale = long_side_length * 1.0 / max(old_h, old_w)
        new_h, new_w = old_h * scale, old_w * scale
        new_w = int(new_w + 0.5)
        new_h = int(new_h + 0.5)
        return new_h, new_w

    def apply_coords(self, coords: np.ndarray, original_size, target_length):
        """
        Expects a numpy array of length 2 in the final dimension. Requires the
        original image size in (H, W) format.
        """
        old_h, old_w = original_size
        new_h, new_w = self.get_preprocess_shape(
            original_size[0], original_size[1], target_length
        )
        coords = deepcopy(coords).astype(float)
        coords[..., 0] = coords[..., 0] * (new_w / old_w)
        coords[..., 1] = coords[..., 1] * (new_h / old_h)
        return coords

    def run_decoder(
        self, image_embedding, original_size, transform_matrix, prompt
    ):
        """Run decoder"""
        input_points, input_labels = self.get_input_points(prompt)

        # Add a batch index, concatenate a padding point, and transform.
        onnx_coord = np.concatenate(
            [input_points, np.array([[0.0, 0.0]])], axis=0
        )[None, :, :]
        onnx_label = np.concatenate([input_labels, np.array([-1])], axis=0)[
            None, :
        ].astype(np.float32)
        onnx_coord = self.apply_coords(
            onnx_coord, self.input_size, self.target_size
        ).astype(np.float32)

        # Apply the transformation matrix to the coordinates.
        onnx_coord = np.concatenate(
            [
                onnx_coord,
                np.ones((1, onnx_coord.shape[1], 1), dtype=np.float32),
            ],
            axis=2,
        )
        onnx_coord = np.matmul(onnx_coord, transform_matrix.T)
        onnx_coord = onnx_coord[:, :, :2].astype(np.float32)

        # Create an empty mask input and an indicator for no mask.
        onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)
        onnx_has_mask_input = np.zeros(1, dtype=np.float32)

        decoder_inputs = {
            "image_embeddings": image_embedding,
            "point_coords": onnx_coord,
            "point_labels": onnx_label,
            "mask_input": onnx_mask_input,
            "has_mask_input": onnx_has_mask_input,
            "orig_im_size": np.array(self.input_size, dtype=np.float32),
        }
        masks, _, _ = self.decoder_session.run(None, decoder_inputs)

        # Transform the masks back to the original image size.
        inv_transform_matrix = np.linalg.inv(transform_matrix)
        transformed_masks = self.transform_masks(
            masks, original_size, inv_transform_matrix
        )

        return transformed_masks

    @staticmethod
    def transform_masks(masks, original_size, transform_matrix):
        """Transform masks
        Transform the masks back to the original image size.
        """
        output_masks = []
        for batch in range(masks.shape[0]):
            batch_masks = []
            for mask_id in range(masks.shape[1]):
                mask = masks[batch, mask_id]
                try:
                    try:
                        app_logger.debug(f"mask_shape transform_masks:{mask.shape}, dtype:{mask.dtype}.")
                    except Exception as e_mask_shape_transform_masks:
                        app_logger.error(f"e_mask_shape_transform_masks:{e_mask_shape_transform_masks}.")
                        # raise e_mask_shape_transform_masks
                    mask = cv2.warpAffine(
                        mask,
                        transform_matrix[:2],
                        (original_size[1], original_size[0]),
                        flags=cv2.INTER_LINEAR,
                    )
                except Exception as e_warp_affine1:
                    app_logger.error(f"e_warp_affine1 mask shape:{mask.shape}, dtype:{mask.dtype}.")
                    app_logger.error(f"e_warp_affine1 transform_matrix:{transform_matrix}, [:2] {transform_matrix[:2]}.")
                    app_logger.error(f"e_warp_affine1 original_size:{original_size}.")
                    raise e_warp_affine1
                batch_masks.append(mask)
            output_masks.append(batch_masks)
        return np.array(output_masks)

    def encode(self, cv_image):
        """
        Calculate embedding and metadata for a single image.
        """
        original_size = cv_image.shape[:2]

        # Calculate a transformation matrix to convert to self.input_size
        scale_x = self.input_size[1] / cv_image.shape[1]
        scale_y = self.input_size[0] / cv_image.shape[0]
        scale = min(scale_x, scale_y)
        transform_matrix = np.array(
            [
                [scale, 0, 0],
                [0, scale, 0],
                [0, 0, 1],
            ]
        )
        try:
            cv_image = cv2.warpAffine(
                cv_image,
                transform_matrix[:2],
                (self.input_size[1], self.input_size[0]),
                flags=cv2.INTER_LINEAR,
            )
        except Exception as e_warp_affine2:
            app_logger.error(f"e_warp_affine2:{e_warp_affine2}.")
            np_cv_image = np.array(cv_image)
            app_logger.error(f"e_warp_affine2 cv_image shape:{np_cv_image.shape}, dtype:{np_cv_image.dtype}.")
            app_logger.error(f"e_warp_affine2 transform_matrix:{transform_matrix}, [:2] {transform_matrix[:2]}")
            app_logger.error(f"e_warp_affine2 self.input_size:{self.input_size}.")
            raise e_warp_affine2

        encoder_inputs = {
            self.encoder_input_name: cv_image.astype(np.float32),
        }
        image_embedding = self.run_encoder(encoder_inputs)
        return {
            "image_embedding": image_embedding,
            "original_size": original_size,
            "transform_matrix": transform_matrix,
        }

    def predict_masks(self, embedding, prompt):
        """
        Predict masks for a single image.
        """
        masks = self.run_decoder(
            embedding["image_embedding"],
            embedding["original_size"],
            embedding["transform_matrix"],
            prompt,
        )

        return masks