File size: 2,930 Bytes
243f395 f2a79fa 3dbe011 fa76f5f 150cbc9 c6054f0 f2a79fa 7d6e00c fa76f5f 243f395 7d6e00c fa76f5f f2a79fa 3dbe011 7d6e00c f2a79fa 7d6e00c f2a79fa 26b4f04 ee50e01 7d6e00c 150cbc9 6f1250c 7d6e00c ddb71db 8c1934b 150cbc9 7d6e00c 150cbc9 f2a79fa 3dbe011 7d6e00c f2a79fa 6f1250c 7d6e00c 6f1250c c6054f0 7d6e00c da5737b fa76f5f ee50e01 fa76f5f 7d6e00c ee50e01 7d6e00c ee50e01 c6054f0 7d6e00c ee50e01 f2a79fa 7d6e00c f2a79fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import json
import time
from http import HTTPStatus
from typing import Dict
from aws_lambda_powertools.event_handler import content_types
from aws_lambda_powertools.utilities.typing import LambdaContext
from src import app_logger
from src.prediction_api.predictors import samexporter_predict
from src.utilities.constants import CUSTOM_RESPONSE_MESSAGES
def get_response(status: int, start_time: float, request_id: str, response_body: Dict = None) -> str:
"""
Return a response for frontend clients.
Args:
status: status response
start_time: request start time (float)
request_id: str
response_body: dict we embed into our response
Returns:
str: json response
"""
app_logger.info(f"response_body:{response_body}.")
response_body["duration_run"] = time.time() - start_time
response_body["message"] = CUSTOM_RESPONSE_MESSAGES[status]
response_body["request_id"] = request_id
response = {
"statusCode": status,
"header": {"Content-Type": content_types.APPLICATION_JSON},
"body": json.dumps(response_body),
"isBase64Encoded": False
}
app_logger.info(f"response type:{type(response)} => {response}.")
return json.dumps(response)
def lambda_handler(event: dict, context: LambdaContext):
app_logger.info(f"start with aws_request_id:{context.aws_request_id}.")
start_time = time.time()
if "version" in event:
app_logger.info(f"event version: {event['version']}.")
try:
app_logger.info(f"event:{json.dumps(event)}...")
app_logger.info(f"context:{context}...")
try:
"""
img, matrix = download_extent(DEFAULT_TMS, pt0[0], pt0[1], pt1[0], pt1[1], 6)
model_path = Path(MODEL_FOLDER) / "mobile_sam.encoder.onnx"
model_path_isfile = model_path.is_file()
model_path_stats = model_path.stat()
app_logger.info(f"model_path:{model_path_isfile}, {model_path_stats}.")
"""
pt0 = 45.699, 127.1
pt1 = 30.1, 148.492
bbox = [pt0, pt1]
zoom = 6
prompt = [{"type": "rectangle", "data": [400, 460, 524, 628]}]
body_response = {"geojson": samexporter_predict(bbox, prompt, zoom)}
app_logger.info(f"body_response::output:{body_response}.")
response = get_response(HTTPStatus.OK.value, start_time, context.aws_request_id, body_response)
except Exception as ve:
app_logger.error(f"validation error:{ve}.")
response = get_response(HTTPStatus.UNPROCESSABLE_ENTITY.value, start_time, context.aws_request_id, {})
except Exception as e:
app_logger.error(f"exception:{e}.")
response = get_response(HTTPStatus.INTERNAL_SERVER_ERROR.value, start_time, context.aws_request_id, {})
app_logger.info(f"response_dumped:{response}...")
return response
|