samgis / src /prediction_api /predictor.py
aletrn's picture
[feat] reformat code, log context request id
25c63a5
raw
history blame
1.87 kB
# Press the green button in the gutter to run the script.
import json
from src import app_logger
from src.utilities.constants import ROOT
from src.utilities.type_hints import input_floatlist, input_floatlist2
def base_predict(
bbox: input_floatlist, point_coords: input_floatlist2, point_crs: str = "EPSG:4326", zoom: float = 16, model_name: str = "vit_h", root_folder: str = ROOT
) -> str:
from samgeo import SamGeo, tms_to_geotiff
image = f"{root_folder}/satellite.tif"
app_logger.info(f"start tms_to_geotiff using bbox:{bbox}, type:{type(bbox)}.")
for coord in bbox:
app_logger.info(f"coord:{coord}, type:{type(coord)}.")
# bbox: image input coordinate
tms_to_geotiff(output=image, bbox=bbox, zoom=zoom, source="Satellite", overwrite=True)
app_logger.info(f"geotiff created, start to initialize samgeo instance (read model {model_name} from {root_folder})...")
predictor = SamGeo(
model_type=model_name,
checkpoint_dir=root_folder,
automatic=False,
sam_kwargs=None,
)
app_logger.info(f"initialized samgeo instance, start to set_image {image}...")
predictor.set_image(image)
output_name = f"{root_folder}/output.tif"
app_logger.info(f"done set_image, start prediction...")
predictor.predict(point_coords, point_labels=len(point_coords), point_crs=point_crs, output=output_name)
app_logger.info(f"done prediction, start tiff to geojson conversion...")
# geotiff to geojson
vector = f"{root_folder}/feats.geojson"
predictor.tiff_to_geojson(output_name, vector, bidx=1)
app_logger.info(f"start reading geojson...")
with open(vector) as out_gdf:
out_gdf_str = out_gdf.read()
out_gdf_json = json.loads(out_gdf_str)
app_logger.info(f"geojson string output length:{len(out_gdf_str)}.")
return out_gdf_json