|
|
|
import json |
|
|
|
from src import app_logger |
|
from src.utilities.constants import ROOT |
|
from src.utilities.type_hints import input_floatlist, input_floatlist2 |
|
|
|
|
|
def base_predict( |
|
bbox: input_floatlist, point_coords: input_floatlist2, point_crs: str = "EPSG:4326", zoom: float = 16, model_name: str = "vit_h", root_folder: str = ROOT |
|
) -> str: |
|
from samgeo import SamGeo, tms_to_geotiff |
|
|
|
image = f"{root_folder}/satellite.tif" |
|
app_logger.info(f"start tms_to_geotiff using bbox:{bbox}, type:{type(bbox)}.") |
|
for coord in bbox: |
|
app_logger.info(f"coord:{coord}, type:{type(coord)}.") |
|
|
|
tms_to_geotiff(output=image, bbox=bbox, zoom=zoom, source="Satellite", overwrite=True) |
|
|
|
app_logger.info(f"geotiff created, start to initialize samgeo instance (read model {model_name} from {root_folder})...") |
|
|
|
predictor = SamGeo( |
|
model_type=model_name, |
|
checkpoint_dir=root_folder, |
|
automatic=False, |
|
sam_kwargs=None, |
|
) |
|
app_logger.info(f"initialized samgeo instance, start to set_image {image}...") |
|
predictor.set_image(image) |
|
output_name = f"{root_folder}/output.tif" |
|
|
|
app_logger.info(f"done set_image, start prediction...") |
|
predictor.predict(point_coords, point_labels=len(point_coords), point_crs=point_crs, output=output_name) |
|
|
|
app_logger.info(f"done prediction, start tiff to geojson conversion...") |
|
|
|
|
|
vector = f"{root_folder}/feats.geojson" |
|
predictor.tiff_to_geojson(output_name, vector, bidx=1) |
|
app_logger.info(f"start reading geojson...") |
|
|
|
with open(vector) as out_gdf: |
|
out_gdf_str = out_gdf.read() |
|
out_gdf_json = json.loads(out_gdf_str) |
|
app_logger.info(f"geojson string output length:{len(out_gdf_str)}.") |
|
return out_gdf_json |
|
|