samgis / src /io /lambda_helpers.py
aletrn's picture
[refactor] apply suggestion from sonarlint
ee2ed59
raw
history blame
4.06 kB
"""lambda helper functions"""
import json
import logging
import time
from typing import Dict, List
from aws_lambda_powertools.event_handler import content_types
from src import app_logger
from src.io.coordinates_pixel_conversion import get_latlng_to_pixel_coordinates
from src.utilities.constants import CUSTOM_RESPONSE_MESSAGES
from src.utilities.type_hints import RawRequestInput
from src.utilities.utilities import base64_decode
def get_response(status: int, start_time: float, request_id: str, response_body: Dict = None) -> str:
"""
Return a response for frontend clients.
Args:
status: status response
start_time: request start time (float)
request_id: str
response_body: dict we embed into our response
Returns:
str: json response
"""
app_logger.debug(f"response_body:{response_body}.")
response_body["duration_run"] = time.time() - start_time
response_body["message"] = CUSTOM_RESPONSE_MESSAGES[status]
response_body["request_id"] = request_id
response = {
"statusCode": status,
"header": {"Content-Type": content_types.APPLICATION_JSON},
"body": json.dumps(response_body),
"isBase64Encoded": False
}
app_logger.debug(f"response type:{type(response)} => {response}.")
return json.dumps(response)
def get_parsed_bbox_points(request_input: RawRequestInput) -> Dict:
"""
Format the bbox and prompt request input
Args:
request_input: input dict
Returns:
Dict:
"""
app_logger.info(f"try to parsing input request {request_input}...")
bbox = request_input.bbox
app_logger.debug(f"request bbox: {type(bbox)}, value:{bbox}.")
ne = bbox.ne
sw = bbox.sw
app_logger.debug(f"request ne: {type(ne)}, value:{ne}.")
app_logger.debug(f"request sw: {type(sw)}, value:{sw}.")
ne_latlng = [float(ne.lat), float(ne.lng)]
sw_latlng = [float(sw.lat), float(sw.lng)]
new_zoom = int(request_input.zoom)
new_prompt_list = []
for prompt in request_input.prompt:
app_logger.debug(f"current prompt: {type(prompt)}, value:{prompt}.")
current_point = get_latlng_to_pixel_coordinates(ne, sw, prompt.data, new_zoom, prompt.type)
app_logger.debug(f"current prompt: {type(current_point)}, value:{current_point}.")
new_prompt_data = [current_point['x'], current_point['y']]
app_logger.debug(f"new_prompt_data: {type(new_prompt_data)}, value:{new_prompt_data}.")
new_prompt = {
"type": prompt.type,
"data": new_prompt_data
}
if prompt.label is not None:
new_prompt["label"] = prompt.label
new_prompt_list.append(new_prompt)
app_logger.debug(f"bbox => {bbox}.")
app_logger.debug(f'request_input-prompt updated => {new_prompt_list}.')
app_logger.info("unpacking elaborated request...")
return {
"bbox": [ne_latlng, sw_latlng],
"prompt": new_prompt_list,
"zoom": new_zoom
}
def get_parsed_request_body(event: Dict):
"""
Parse the input request lambda event.
Args:
event: input dict
Returns:
RawRequestInput: parsed request input
"""
app_logger.info(f"event:{json.dumps(event)}...")
try:
raw_body = event["body"]
except Exception as e_constants1:
app_logger.error(f"e_constants1:{e_constants1}.")
raw_body = event
app_logger.debug(f"raw_body, #1: {type(raw_body)}, {raw_body}...")
if isinstance(raw_body, str):
body_decoded_str = base64_decode(raw_body)
app_logger.debug(f"body_decoded_str: {type(body_decoded_str)}, {body_decoded_str}...")
raw_body = json.loads(body_decoded_str)
app_logger.info(f"body, #2: {type(raw_body)}, {raw_body}...")
parsed_body = RawRequestInput.model_validate(raw_body)
log_level = "DEBUG" if parsed_body.debug else "INFO"
app_logger.setLevel(log_level)
app_logger.warning(f"set log level to {logging.getLevelName(app_logger.log_level)}.")
return parsed_body