|
"""lambda helper functions""" |
|
import json |
|
import logging |
|
import time |
|
from typing import Dict, List |
|
from aws_lambda_powertools.event_handler import content_types |
|
|
|
from src import app_logger |
|
from src.io.coordinates_pixel_conversion import get_latlng_to_pixel_coordinates |
|
from src.utilities.constants import CUSTOM_RESPONSE_MESSAGES |
|
from src.utilities.type_hints import RawRequestInput |
|
from src.utilities.utilities import base64_decode |
|
|
|
|
|
def get_response(status: int, start_time: float, request_id: str, response_body: Dict = None) -> str: |
|
""" |
|
Return a response for frontend clients. |
|
|
|
Args: |
|
status: status response |
|
start_time: request start time (float) |
|
request_id: str |
|
response_body: dict we embed into our response |
|
|
|
Returns: |
|
str: json response |
|
|
|
""" |
|
app_logger.debug(f"response_body:{response_body}.") |
|
response_body["duration_run"] = time.time() - start_time |
|
response_body["message"] = CUSTOM_RESPONSE_MESSAGES[status] |
|
response_body["request_id"] = request_id |
|
|
|
response = { |
|
"statusCode": status, |
|
"header": {"Content-Type": content_types.APPLICATION_JSON}, |
|
"body": json.dumps(response_body), |
|
"isBase64Encoded": False |
|
} |
|
app_logger.debug(f"response type:{type(response)} => {response}.") |
|
return json.dumps(response) |
|
|
|
|
|
def get_parsed_bbox_points(request_input: RawRequestInput) -> Dict: |
|
""" |
|
Format the bbox and prompt request input |
|
|
|
Args: |
|
request_input: input dict |
|
|
|
Returns: |
|
Dict: |
|
""" |
|
app_logger.info(f"try to parsing input request {request_input}...") |
|
|
|
bbox = request_input.bbox |
|
app_logger.debug(f"request bbox: {type(bbox)}, value:{bbox}.") |
|
ne = bbox.ne |
|
sw = bbox.sw |
|
app_logger.debug(f"request ne: {type(ne)}, value:{ne}.") |
|
app_logger.debug(f"request sw: {type(sw)}, value:{sw}.") |
|
ne_latlng = [float(ne.lat), float(ne.lng)] |
|
sw_latlng = [float(sw.lat), float(sw.lng)] |
|
new_zoom = int(request_input.zoom) |
|
new_prompt_list = [] |
|
for prompt in request_input.prompt: |
|
app_logger.debug(f"current prompt: {type(prompt)}, value:{prompt}.") |
|
current_point = get_latlng_to_pixel_coordinates(ne, sw, prompt.data, new_zoom, prompt.type) |
|
app_logger.debug(f"current prompt: {type(current_point)}, value:{current_point}.") |
|
new_prompt_data = [current_point['x'], current_point['y']] |
|
app_logger.debug(f"new_prompt_data: {type(new_prompt_data)}, value:{new_prompt_data}.") |
|
new_prompt = { |
|
"type": prompt.type, |
|
"data": new_prompt_data |
|
} |
|
if prompt.label is not None: |
|
new_prompt["label"] = prompt.label |
|
new_prompt_list.append(new_prompt) |
|
|
|
app_logger.debug(f"bbox => {bbox}.") |
|
app_logger.debug(f'request_input-prompt updated => {new_prompt_list}.') |
|
|
|
app_logger.info("unpacking elaborated request...") |
|
return { |
|
"bbox": [ne_latlng, sw_latlng], |
|
"prompt": new_prompt_list, |
|
"zoom": new_zoom |
|
} |
|
|
|
|
|
def get_parsed_request_body(event: Dict): |
|
""" |
|
Parse the input request lambda event. |
|
|
|
Args: |
|
event: input dict |
|
|
|
Returns: |
|
RawRequestInput: parsed request input |
|
""" |
|
app_logger.info(f"event:{json.dumps(event)}...") |
|
try: |
|
raw_body = event["body"] |
|
except Exception as e_constants1: |
|
app_logger.error(f"e_constants1:{e_constants1}.") |
|
raw_body = event |
|
app_logger.debug(f"raw_body, #1: {type(raw_body)}, {raw_body}...") |
|
if isinstance(raw_body, str): |
|
body_decoded_str = base64_decode(raw_body) |
|
app_logger.debug(f"body_decoded_str: {type(body_decoded_str)}, {body_decoded_str}...") |
|
raw_body = json.loads(body_decoded_str) |
|
app_logger.info(f"body, #2: {type(raw_body)}, {raw_body}...") |
|
|
|
parsed_body = RawRequestInput.model_validate(raw_body) |
|
log_level = "DEBUG" if parsed_body.debug else "INFO" |
|
app_logger.setLevel(log_level) |
|
app_logger.warning(f"set log level to {logging.getLevelName(app_logger.log_level)}.") |
|
|
|
return parsed_body |
|
|