|
|
|
import numpy as np |
|
from typing import List |
|
|
|
from src import app_logger, MODEL_FOLDER |
|
from src.io.tms2geotiff import download_extent |
|
from src.prediction_api.sam_onnx import SegmentAnythingONNX |
|
from src.utilities.constants import MODEL_ENCODER_NAME, ZOOM, DEFAULT_TMS, MODEL_DECODER_NAME |
|
from src.utilities.serialize import serialize |
|
from src.utilities.type_hints import input_float_tuples |
|
|
|
|
|
models_dict = {"fastsam": {"instance": None}} |
|
|
|
|
|
def zip_arrays(arr1, arr2): |
|
try: |
|
arr1_list = arr1.tolist() |
|
arr2_list = arr2.tolist() |
|
|
|
d = {} |
|
for n1, n2 in zip(arr1_list, arr2_list): |
|
app_logger.info(f"n1:{n1}, type {type(n1)}, n2:{n2}, type {type(n2)}.") |
|
n1f = str(n1) |
|
n2f = str(n2) |
|
app_logger.info(f"n1:{n1}=>{n1f}, n2:{n2}=>{n2f}.") |
|
d[n1f] = n2f |
|
app_logger.info(f"zipped dict:{d}.") |
|
return d |
|
except Exception as e_zip_arrays: |
|
app_logger.info(f"exception zip_arrays:{e_zip_arrays}.") |
|
return {} |
|
|
|
|
|
def load_affine_transformation_from_matrix(matrix_source_coeffs: List): |
|
from affine import Affine |
|
|
|
if len(matrix_source_coeffs) != 6: |
|
raise ValueError(f"Expected 6 coefficients, found {len(matrix_source_coeffs)}; argument type: {type(matrix_source_coeffs)}.") |
|
|
|
try: |
|
a, d, b, e, c, f = (float(x) for x in matrix_source_coeffs) |
|
center = tuple.__new__(Affine, [a, b, c, d, e, f, 0.0, 0.0, 1.0]) |
|
return center * Affine.translation(-0.5, -0.5) |
|
except Exception as e: |
|
app_logger.error(f"exception:{e}, check https://github.com/rasterio/affine project for updates") |
|
|
|
|
|
def samexporter_predict(bbox: input_float_tuples, prompt: list[dict], zoom: float = ZOOM, model_name: str = "fastsam") -> dict: |
|
try: |
|
from rasterio.features import shapes |
|
from geopandas import GeoDataFrame |
|
|
|
if models_dict[model_name]["instance"] is None: |
|
app_logger.info(f"missing instance model {model_name}, instantiating it now") |
|
model_instance = SegmentAnythingONNX( |
|
encoder_model_path=MODEL_FOLDER / MODEL_ENCODER_NAME, |
|
decoder_model_path=MODEL_FOLDER / MODEL_DECODER_NAME |
|
) |
|
models_dict[model_name]["instance"] = model_instance |
|
app_logger.info(f"using a {model_name} instance model...") |
|
models_instance = models_dict[model_name]["instance"] |
|
|
|
for coord in bbox: |
|
app_logger.debug(f"bbox coord:{coord}, type:{type(coord)}.") |
|
app_logger.info(f"start download_extent using bbox:{bbox}, type:{type(bbox)}, download image...") |
|
|
|
pt0 = bbox[0] |
|
pt1 = bbox[1] |
|
img, matrix = download_extent(DEFAULT_TMS, pt0[0], pt0[1], pt1[0], pt1[1], zoom) |
|
|
|
app_logger.info(f"img type {type(img)}, matrix type {type(matrix)}.") |
|
app_logger.debug(f"matrix values: {serialize(matrix)}.") |
|
np_img = np.array(img) |
|
app_logger.debug(f"np_img type {type(np_img)}.") |
|
app_logger.debug(f"np_img dtype {np_img.dtype}, shape {np_img.shape}.") |
|
app_logger.info(f"geotiff created with size/shape {img.size} and transform matrix {str(matrix)}, start to initialize SamGeo instance:") |
|
app_logger.info(f"use {model_name} model, ENCODER model {MODEL_ENCODER_NAME} and {MODEL_DECODER_NAME} from {MODEL_FOLDER}): model instantiated, creating embedding...") |
|
embedding = models_instance.encode(np_img) |
|
app_logger.info(f"embedding created, running predict_masks...") |
|
prediction_masks = models_instance.predict_masks(embedding, prompt) |
|
app_logger.debug(f"predict_masks terminated...") |
|
app_logger.info(f"predict_masks terminated, prediction masks shape:{prediction_masks.shape}, {prediction_masks.dtype}.") |
|
|
|
mask = np.zeros((prediction_masks.shape[2], prediction_masks.shape[3]), dtype=np.uint8) |
|
for m in prediction_masks[0, :, :, :]: |
|
mask[m > 0.0] = 255 |
|
|
|
mask_unique_values, mask_unique_values_count = serialize(np.unique(mask, return_counts=True)) |
|
app_logger.debug(f"mask_unique_values:{mask_unique_values}.") |
|
app_logger.debug(f"mask_unique_values_count:{mask_unique_values_count}.") |
|
|
|
transform = load_affine_transformation_from_matrix(matrix) |
|
app_logger.info(f"image/geojson origin matrix:{matrix}, transform:{transform}: create shapes_generator...") |
|
shapes_generator = ({ |
|
'properties': {'raster_val': v}, 'geometry': s} |
|
for i, (s, v) |
|
in enumerate(shapes(mask, mask=mask, transform=transform)) |
|
) |
|
shapes_list = list(shapes_generator) |
|
app_logger.info(f"created {len(shapes_list)} polygons.") |
|
gpd_polygonized_raster = GeoDataFrame.from_features(shapes_list, crs="EPSG:3857") |
|
app_logger.info(f"created a GeoDataFrame...") |
|
geojson = gpd_polygonized_raster.to_json(to_wgs84=True) |
|
app_logger.info(f"created geojson...") |
|
|
|
return { |
|
"geojson": geojson, |
|
"n_shapes_geojson": len(shapes_list), |
|
"n_predictions": len(prediction_masks), |
|
|
|
} |
|
except ImportError as e: |
|
app_logger.error(f"Error trying import module:{e}.") |
|
|