|
|
|
import numpy as np |
|
|
|
from src import app_logger, MODEL_FOLDER |
|
from src.io.geo_helpers import get_vectorized_raster_as_geojson, get_affine_transform_from_gdal |
|
from src.io.tms2geotiff import download_extent |
|
from src.prediction_api.sam_onnx import SegmentAnythingONNX |
|
from src.utilities.constants import MODEL_ENCODER_NAME, MODEL_DECODER_NAME, DEFAULT_TMS |
|
|
|
|
|
models_dict = {"fastsam": {"instance": None}} |
|
|
|
|
|
def samexporter_predict(bbox, prompt: list[dict], zoom: float, model_name: str = "fastsam") -> dict: |
|
try: |
|
if models_dict[model_name]["instance"] is None: |
|
app_logger.info(f"missing instance model {model_name}, instantiating it now!") |
|
model_instance = SegmentAnythingONNX( |
|
encoder_model_path=MODEL_FOLDER / MODEL_ENCODER_NAME, |
|
decoder_model_path=MODEL_FOLDER / MODEL_DECODER_NAME |
|
) |
|
models_dict[model_name]["instance"] = model_instance |
|
app_logger.debug(f"using a {model_name} instance model...") |
|
models_instance = models_dict[model_name]["instance"] |
|
|
|
app_logger.info(f'tile_source: {DEFAULT_TMS}!') |
|
pt0, pt1 = bbox |
|
app_logger.info(f"downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.") |
|
img, matrix = download_extent(DEFAULT_TMS, pt0[0], pt0[1], pt1[0], pt1[1], zoom) |
|
app_logger.info(f"img type {type(img)} with shape/size:{img.size}, matrix:{matrix}.") |
|
|
|
transform = get_affine_transform_from_gdal(matrix) |
|
app_logger.info(f"transform to consume with rasterio.shapes: {type(transform)}, {transform}.") |
|
|
|
mask, n_predictions = get_raster_inference(img, prompt, models_instance, model_name) |
|
app_logger.info(f"created {n_predictions} masks, preparing conversion to geojson...") |
|
return { |
|
"n_predictions": n_predictions, |
|
**get_vectorized_raster_as_geojson(mask, transform) |
|
} |
|
except ImportError as e_import_module: |
|
app_logger.error(f"Error trying import module:{e_import_module}.") |
|
|
|
|
|
def get_raster_inference(img, prompt, models_instance, model_name): |
|
np_img = np.array(img) |
|
app_logger.info(f"img type {type(np_img)}, prompt:{prompt}.") |
|
app_logger.debug(f"onnxruntime input shape/size (shape if PIL) {np_img.size}.") |
|
try: |
|
app_logger.debug(f"onnxruntime input shape (NUMPY) {np_img.shape}.") |
|
except Exception as e_shape: |
|
app_logger.error(f"e_shape:{e_shape}.") |
|
app_logger.info(f"instantiated model {model_name}, ENCODER {MODEL_ENCODER_NAME}, " |
|
f"DECODER {MODEL_DECODER_NAME} from {MODEL_FOLDER}: Creating embedding...") |
|
embedding = models_instance.encode(np_img) |
|
app_logger.debug(f"embedding created, running predict_masks with prompt {prompt}...") |
|
inference_out = models_instance.predict_masks(embedding, prompt) |
|
len_predictions = len(inference_out[0, :, :, :]) |
|
app_logger.info(f"Created {len_predictions} prediction_masks," |
|
f"shape:{inference_out.shape}, dtype:{inference_out.dtype}.") |
|
mask = np.zeros((inference_out.shape[2], inference_out.shape[3]), dtype=np.uint8) |
|
for n, m in enumerate(inference_out[0, :, :, :]): |
|
app_logger.debug(f"{n}th of prediction_masks shape {inference_out.shape}" |
|
f" => mask shape:{mask.shape}, {mask.dtype}.") |
|
mask[m > 0.0] = 255 |
|
return mask, len_predictions |
|
|