samgis / src /prediction_api /predictors.py
aletrn's picture
[refactor] remove debug LogArgumentsDecorator
2b9a42c
raw
history blame
4.4 kB
# Press the green button in the gutter to run the script.
import json
import tempfile
import numpy as np
from src import app_logger, MODEL_FOLDER
from src.io.geo_helpers import get_vectorized_raster_as_geojson, get_affine_transform_from_gdal
from src.io.tms2geotiff import download_extent
from src.prediction_api.sam_onnx import SegmentAnythingONNX
from src.utilities.constants import MODEL_ENCODER_NAME, MODEL_DECODER_NAME, DEFAULT_TMS
from src.utilities.serialize import serialize
models_dict = {"fastsam": {"instance": None}}
def samexporter_predict(bbox, prompt: list[dict], zoom: float, model_name: str = "fastsam") -> dict:
try:
if models_dict[model_name]["instance"] is None:
app_logger.info(f"missing instance model {model_name}, instantiating it now!")
model_instance = SegmentAnythingONNX(
encoder_model_path=MODEL_FOLDER / MODEL_ENCODER_NAME,
decoder_model_path=MODEL_FOLDER / MODEL_DECODER_NAME
)
models_dict[model_name]["instance"] = model_instance
app_logger.debug(f"using a {model_name} instance model...")
models_instance = models_dict[model_name]["instance"]
app_logger.info(f'tile_source: {DEFAULT_TMS}!')
pt0, pt1 = bbox
app_logger.info(f"downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.")
img, matrix = download_extent(DEFAULT_TMS, pt0[0], pt0[1], pt1[0], pt1[1], zoom)
app_logger.info(f"img type {type(img)} with shape/size:{img.size}, matrix:{matrix}.")
with tempfile.NamedTemporaryFile(mode='w', prefix=f"matrix_", delete=False) as temp_f1:
json.dump({"matrix": serialize(matrix)}, temp_f1)
transform = get_affine_transform_from_gdal(matrix)
app_logger.debug(f"transform to consume with rasterio.shapes: {type(transform)}, {transform}.")
mask, n_predictions = get_raster_inference(img, prompt, models_instance, model_name)
app_logger.info(f"created {n_predictions} masks, preparing conversion to geojson...")
return {
"n_predictions": n_predictions,
**get_vectorized_raster_as_geojson(mask, matrix)
}
except ImportError as e_import_module:
app_logger.error(f"Error trying import module:{e_import_module}.")
def get_raster_inference(img, prompt, models_instance, model_name):
np_img = np.array(img)
app_logger.info(f"img type {type(np_img)}, prompt:{prompt}.")
app_logger.debug(f"onnxruntime input shape/size (shape if PIL) {np_img.size}.")
try:
app_logger.debug(f"onnxruntime input shape (NUMPY) {np_img.shape}.")
except Exception as e_shape:
app_logger.error(f"e_shape:{e_shape}.")
try:
with tempfile.NamedTemporaryFile(mode='w', prefix=f"get_raster_inference__img_", delete=False) as temp_f0:
np.save(str(temp_f0.file.name), np_img)
except Exception as e_save:
app_logger.error(f"e_save:{e_save}.")
raise e_save
app_logger.info(f"instantiated model {model_name}, ENCODER {MODEL_ENCODER_NAME}, "
f"DECODER {MODEL_DECODER_NAME} from {MODEL_FOLDER}: Creating embedding...")
embedding = models_instance.encode(np_img)
app_logger.debug(f"embedding created, running predict_masks with prompt {prompt}...")
inference_out = models_instance.predict_masks(embedding, prompt)
len_inference_out = len(inference_out[0, :, :, :])
app_logger.info(f"Created {len_inference_out} prediction_masks,"
f"shape:{inference_out.shape}, dtype:{inference_out.dtype}.")
mask = np.zeros((inference_out.shape[2], inference_out.shape[3]), dtype=np.uint8)
for n, m in enumerate(inference_out[0, :, :, :]):
app_logger.debug(f"{n}th of prediction_masks shape {inference_out.shape}"
f" => mask shape:{mask.shape}, {mask.dtype}.")
mask[m > 0.0] = 255
try:
with tempfile.NamedTemporaryFile(mode='w', prefix=f"get_raster_inference__mask_", delete=False) as temp_f1:
np.save(temp_f1.file.name, mask)
with tempfile.NamedTemporaryFile(mode='w', prefix=f"get_raster_inference__inference_out_", delete=False) as temp_f2:
np.save(temp_f2.file.name, inference_out)
except Exception as e_save1:
app_logger.error(f"e_save1:{e_save1}.")
raise e_save1
return mask, len_inference_out