aletrn commited on
Commit
924419a
·
1 Parent(s): fd9de0f

[refactor] download raster tiles with contextily.tile.bounds2img()

Browse files
.idea/.gitignore DELETED
@@ -1,3 +0,0 @@
1
- # Default ignored files
2
- /shelf/
3
- /workspace.xml
 
 
 
 
requirements.txt CHANGED
@@ -1,6 +1,7 @@
1
  aws-lambda-powertools
2
  awslambdaric
3
  bson
 
4
  geopandas
5
  jmespath
6
  myst-parser
 
1
  aws-lambda-powertools
2
  awslambdaric
3
  bson
4
+ contextily
5
  geopandas
6
  jmespath
7
  myst-parser
requirements_dockerfile.txt CHANGED
@@ -1,6 +1,7 @@
1
  aws-lambda-powertools
2
  awslambdaric
3
  bson
 
4
  geopandas
5
  jmespath
6
  numpy
 
1
  aws-lambda-powertools
2
  awslambdaric
3
  bson
4
+ contextily
5
  geopandas
6
  jmespath
7
  numpy
src/io/coordinates_pixel_conversion.py CHANGED
@@ -1,7 +1,7 @@
1
  """functions useful to convert to/from latitude-longitude coordinates to pixel image coordinates"""
2
  from src import app_logger
3
- from src.utilities.constants import TILE_SIZE
4
- from src.utilities.type_hints import ImagePixelCoordinates
5
  from src.utilities.type_hints import LatLngDict
6
 
7
 
@@ -58,7 +58,7 @@ def get_latlng_to_pixel_coordinates(
58
  latlng_origin_ne: NE latitude-longitude origin point
59
  latlng_origin_sw: SW latitude-longitude origin point
60
  latlng_current_point: latitude-longitude prompt point
61
- zoom: zoom value
62
  k: prompt type
63
 
64
  Returns:
@@ -74,3 +74,20 @@ def get_latlng_to_pixel_coordinates(
74
  point = ImagePixelCoordinates(x=diff_coord_x, y=diff_coord_y)
75
  app_logger.debug(f"point type - {k}: {point}.")
76
  return point
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """functions useful to convert to/from latitude-longitude coordinates to pixel image coordinates"""
2
  from src import app_logger
3
+ from src.utilities.constants import TILE_SIZE, EARTH_EQUATORIAL_RADIUS
4
+ from src.utilities.type_hints import ImagePixelCoordinates, tuple_float, tuple_float_any
5
  from src.utilities.type_hints import LatLngDict
6
 
7
 
 
58
  latlng_origin_ne: NE latitude-longitude origin point
59
  latlng_origin_sw: SW latitude-longitude origin point
60
  latlng_current_point: latitude-longitude prompt point
61
+ zoom: Level of detail
62
  k: prompt type
63
 
64
  Returns:
 
74
  point = ImagePixelCoordinates(x=diff_coord_x, y=diff_coord_y)
75
  app_logger.debug(f"point type - {k}: {point}.")
76
  return point
77
+
78
+
79
+ def _from4326_to3857(lat: float, lon: float) -> tuple_float or tuple_float_any:
80
+ from math import radians, log, tan
81
+
82
+ x_tile: float = radians(lon) * EARTH_EQUATORIAL_RADIUS
83
+ y_tile: float = log(tan(radians(45 + lat / 2.0))) * EARTH_EQUATORIAL_RADIUS
84
+ return x_tile, y_tile
85
+
86
+
87
+ def _deg2num(lat: float, lon: float, zoom: int):
88
+ from math import radians, pi, asinh, tan
89
+
90
+ n = 2 ** zoom
91
+ x_tile = ((lon + 180) / 360 * n)
92
+ y_tile = (1 - asinh(tan(radians(lat))) / pi) * n / 2
93
+ return x_tile, y_tile
src/io/geo_helpers.py CHANGED
@@ -42,13 +42,13 @@ def get_affine_transform_from_gdal(matrix_source_coefficients: list_float or tup
42
  return Affine.from_gdal(*matrix_source_coefficients)
43
 
44
 
45
- def get_vectorized_raster_as_geojson(mask: np_ndarray, matrix: tuple_float) -> dict_str_int:
46
  """
47
  Get shapes and values of connected regions in a dataset or array
48
 
49
  Args:
50
  mask: numpy mask
51
- matrix: tuple of float to transform into an Affine transform
52
 
53
  Returns:
54
  dict containing the output geojson and the predictions number
@@ -57,8 +57,7 @@ def get_vectorized_raster_as_geojson(mask: np_ndarray, matrix: tuple_float) -> d
57
  from rasterio.features import shapes
58
  from geopandas import GeoDataFrame
59
 
60
- transform = get_affine_transform_from_gdal(matrix)
61
- app_logger.info(f"transform to consume with rasterio.shapes: {type(transform)}, {transform}.")
62
 
63
  # old value for mask => band != 0
64
  shapes_generator = ({
 
42
  return Affine.from_gdal(*matrix_source_coefficients)
43
 
44
 
45
+ def get_vectorized_raster_as_geojson(mask: np_ndarray, transform: tuple_float) -> dict_str_int:
46
  """
47
  Get shapes and values of connected regions in a dataset or array
48
 
49
  Args:
50
  mask: numpy mask
51
+ transform: tuple of float to transform into an Affine transform
52
 
53
  Returns:
54
  dict containing the output geojson and the predictions number
 
57
  from rasterio.features import shapes
58
  from geopandas import GeoDataFrame
59
 
60
+ app_logger.debug(f"matrix to consume with rasterio.shapes: {type(transform)}, {transform}.")
 
61
 
62
  # old value for mask => band != 0
63
  shapes_generator = ({
src/io/tms2geotiff.py CHANGED
@@ -1,246 +1,141 @@
1
- """
2
- Download geo-referenced raster tiles images.
3
- Modified from https://github.com/gumblex/tms2geotiff/
4
-
5
- BSD 2-Clause License
6
-
7
- Copyright (c) 2019, Dingyuan Wang
8
- All rights reserved.
9
-
10
- Redistribution and use in source and binary forms, with or without
11
- modification, are permitted provided that the following conditions are met:
12
-
13
- * Redistributions of source code must retain the above copyright notice, this
14
- list of conditions and the following disclaimer.
15
-
16
- * Redistributions in binary form must reproduce the above copyright notice,
17
- this list of conditions and the following disclaimer in the documentation
18
- and/or other materials provided with the distribution.
19
-
20
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
- """
31
- import concurrent.futures
32
- import io
33
- import itertools
34
- import math
35
- import re
36
- import time
37
- from typing import Tuple, Callable
38
- from PIL import Image
39
 
40
  from src import app_logger
41
- from src.utilities.constants import EARTH_EQUATORIAL_RADIUS, RETRY_DOWNLOAD, TIMEOUT_DOWNLOAD, TILE_SIZE, \
42
- CALLBACK_INTERVAL_DOWNLOAD
43
- from src.utilities.type_hints import PIL_Image, tuple_float, tuple_float_any, list_int, tuple_int
44
-
45
- Image.MAX_IMAGE_PIXELS = None
46
-
47
- try:
48
- import httpx
49
-
50
- SESSION = httpx.Client()
51
- except ImportError:
52
- import requests
53
-
54
- SESSION = requests.Session()
55
-
56
- SESSION.headers.update({
57
- "Accept": "*/*",
58
- "Accept-Encoding": "gzip, deflate",
59
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; rv:91.0) Gecko/20100101 Firefox/91.0",
60
- })
61
-
62
- re_coords_split = re.compile('[ ,;]+')
63
-
64
-
65
- def _from4326_to3857(lat: float, lon: float) -> tuple_float or tuple_float_any:
66
- x_tile: float = math.radians(lon) * EARTH_EQUATORIAL_RADIUS
67
- y_tile: float = math.log(math.tan(math.radians(45 + lat / 2.0))) * EARTH_EQUATORIAL_RADIUS
68
- return x_tile, y_tile
69
-
70
-
71
- def _deg2num(lat: float, lon: float, zoom: int):
72
- n = 2 ** zoom
73
- x_tile = ((lon + 180) / 360 * n)
74
- y_tile = (1 - math.asinh(math.tan(math.radians(lat))) / math.pi) * n / 2
75
- return x_tile, y_tile
76
-
77
-
78
- def _is_empty(image):
79
- extrema = image.getextrema()
80
- if len(extrema) >= 3:
81
- if len(extrema) > 3 and extrema[-1] == (0, 0):
82
- return True
83
- for ext in extrema[:3]:
84
- if ext != (0, 0):
85
- return False
86
- return True
87
- return extrema[0] == (0, 0)
88
-
89
-
90
- def _paste_tile(big_image: PIL_Image or None, base_size: list_int, tile: bytes, corner_xy: tuple_int, bbox: tuple_int):
91
- if tile is None:
92
- return big_image
93
- with Image.open(io.BytesIO(tile)) as tmp_image:
94
- mode = 'RGB' if tmp_image.mode == 'RGB' else 'RGBA'
95
- size = tmp_image.size
96
- new_image = big_image
97
- if big_image is None:
98
- base_size[0] = size[0]
99
- base_size[1] = size[1]
100
- new_image = Image.new(mode, (
101
- size[0] * (bbox[2] - bbox[0]), size[1] * (bbox[3] - bbox[1])))
102
-
103
- dx = abs(corner_xy[0] - bbox[0])
104
- dy = abs(corner_xy[1] - bbox[1])
105
- xy0 = (size[0] * dx, size[1] * dy)
106
- if mode == 'RGB':
107
- new_image.paste(tmp_image, xy0)
108
- else:
109
- if tmp_image.mode != mode:
110
- tmp_image = tmp_image.convert(mode)
111
- if not _is_empty(tmp_image):
112
- new_image.paste(tmp_image, xy0)
113
- return new_image
114
-
115
-
116
- def _get_tile(url: str) -> bytes or None:
117
- retry = RETRY_DOWNLOAD
118
- while 1:
119
- try:
120
- app_logger.debug(f"image tile url to download: {url}.")
121
- r = SESSION.get(url, timeout=TIMEOUT_DOWNLOAD)
122
- break
123
- except Exception as request_tile_exception:
124
- app_logger.error(f"retry {retry}, request_tile_exception:{request_tile_exception}.")
125
- retry -= 1
126
- if not retry:
127
- raise
128
- if r.status_code == 404 or not r.content:
129
- return None
130
- r.raise_for_status()
131
- return r.content
132
-
133
-
134
- def log_progress(progress, total, done=False):
135
- """log the progress download"""
136
- if done:
137
- app_logger.info('Downloaded image %d/%d, %.2f%%' % (progress, total, progress * 100 / total))
138
-
139
-
140
- def download_extent(
141
- source: str, lat0: float, lon0: float, lat1: float, lon1: float, zoom: int,
142
- save_image: bool = True, progress_callback: Callable = log_progress,
143
- callback_interval: float = CALLBACK_INTERVAL_DOWNLOAD
144
- ) -> Tuple[PIL_Image, Tuple[float]] or Tuple[None]:
145
  """
146
  Download, merge and crop a list of tiles into a single geo-referenced image or a raster geodata
147
 
148
  Args:
149
- source: remote url tile
150
- lat0: point0 bounding box latitude
151
- lat1: point0 bounding box longitude
152
- lon0: point1 bounding box latitude
153
- lon1: point1 bounding box longitude
154
- zoom: bounding box zoom
155
- save_image: boolean to choose if save the image
156
- progress_callback: callback function
157
- callback_interval: process callback interval time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
 
159
  Returns:
160
  parsed request input
161
  """
162
- x0, y0 = _deg2num(lat0, lon0, zoom)
163
- x1, y1 = _deg2num(lat1, lon1, zoom)
164
- if x0 > x1:
165
- x0, x1 = x1, x0
166
- if y0 > y1:
167
- y0, y1 = y1, y0
168
-
169
- corners = tuple(itertools.product(
170
- range(math.floor(x0), math.ceil(x1)),
171
- range(math.floor(y0), math.ceil(y1))))
172
- total_num = len(corners)
173
- futures = {}
174
- done_num = 0
175
- progress_callback(done_num, total_num, False)
176
- last_done_num = 0
177
- last_callback = time.monotonic()
178
- cancelled = False
179
- with concurrent.futures.ThreadPoolExecutor(5) as executor:
180
- for x, y in corners:
181
- future = executor.submit(_get_tile, source.format(z=zoom, x=x, y=y))
182
- futures[future] = (x, y)
183
- bbox = (math.floor(x0), math.floor(y0), math.ceil(x1), math.ceil(y1))
184
- big_image = None
185
- base_size = [TILE_SIZE, TILE_SIZE]
186
- big_image, cancelled, done_num = _run_future_tile_download(
187
- base_size, bbox, big_image, callback_interval, cancelled, done_num, futures, last_callback, last_done_num,
188
- progress_callback, save_image, total_num
189
- )
190
- if cancelled:
191
- raise TaskCancelled()
192
- progress_callback(done_num, total_num, True)
193
-
194
- if not save_image:
195
- return None, None
196
-
197
- x_frac = x0 - bbox[0]
198
- y_frac = y0 - bbox[1]
199
- x2 = round(base_size[0] * x_frac)
200
- y2 = round(base_size[1] * y_frac)
201
- img_w = round(base_size[0] * (x1 - x0))
202
- img_h = round(base_size[1] * (y1 - y0))
203
- final_image = big_image.crop((x2, y2, x2 + img_w, y2 + img_h))
204
- if final_image.mode == 'RGBA' and final_image.getextrema()[3] == (255, 255):
205
- final_image = final_image.convert('RGB')
206
- big_image.close()
207
- xp0, yp0 = _from4326_to3857(lat0, lon0)
208
- xp1, yp1 = _from4326_to3857(lat1, lon1)
209
- p_width = abs(xp1 - xp0) / final_image.size[0]
210
- p_height = abs(yp1 - yp0) / final_image.size[1]
211
- matrix = min(xp0, xp1), p_width, 0, max(yp0, yp1), 0, -p_height
212
- return final_image, matrix
213
-
214
-
215
- def _run_future_tile_download(
216
- base_size, bbox, big_im, callback_interval, cancelled, done_num, futures, last_callback, last_done_num,
217
- progress_callback, save_image, total_num
218
- ):
219
- while futures:
220
- done, _ = concurrent.futures.wait(
221
- futures.keys(), timeout=callback_interval,
222
- return_when=concurrent.futures.FIRST_COMPLETED
223
- )
224
- for fut in done:
225
- img_data = fut.result()
226
- xy = futures[fut]
227
- if save_image:
228
- big_im = _paste_tile(big_im, base_size, img_data, xy, bbox)
229
- del futures[fut]
230
- done_num += 1
231
- if time.monotonic() > last_callback + callback_interval:
232
- try:
233
- progress_callback(done_num, total_num, (done_num > last_done_num))
234
- except TaskCancelled:
235
- for fut in futures.keys():
236
- fut.cancel()
237
- futures.clear()
238
- cancelled = True
239
- break
240
- last_callback = time.monotonic()
241
- last_done_num = done_num
242
- return big_im, cancelled, done_num
243
-
244
-
245
- class TaskCancelled(RuntimeError):
246
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy import ndarray
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  from src import app_logger
4
+ from src.utilities.constants import OUTPUT_CRS_STRING, DRIVER_RASTERIO_GTIFF, OSM_MAX_RETRIES, OSM_N_CONNECTIONS, \
5
+ OSM_WAIT, OSM_ZOOM_AUTO, OSM_USE_CACHE
6
+ from src.utilities.type_hints import tuple_ndarray_transform, tuple_float
7
+
8
+
9
+ def download_extent(w: float, s: float, e: float, n: float, zoom: int or str = OSM_ZOOM_AUTO, source: str = None,
10
+ wait: int = OSM_WAIT, max_retries: int = OSM_MAX_RETRIES, n_connections: int = OSM_N_CONNECTIONS,
11
+ use_cache: bool = OSM_USE_CACHE) -> tuple_ndarray_transform:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  """
13
  Download, merge and crop a list of tiles into a single geo-referenced image or a raster geodata
14
 
15
  Args:
16
+ w: West edge
17
+ s: South edge
18
+ e: East edge
19
+ n: North edge
20
+ zoom: Level of detail
21
+ source: xyzservices.TileProvider object or str
22
+ [Optional. Default: OpenStreetMap Humanitarian web tiles]
23
+ The tile source: web tile provider or path to local file. The web tile
24
+ provider can be in the form of a :class:`xyzservices.TileProvider` object or a
25
+ URL. The placeholders for the XYZ in the URL need to be `{x}`, `{y}`,
26
+ `{z}`, respectively. For local file paths, the file is read with
27
+ `rasterio` and all bands are loaded into the basemap.
28
+ IMPORTANT: tiles are assumed to be in the Spherical Mercator
29
+ projection (EPSG:3857), unless the `crs` keyword is specified.
30
+ wait: if the tile API is rate-limited, the number of seconds to wait
31
+ between a failed request and the next try
32
+ max_retries: total number of rejected requests allowed before contextily will stop trying to fetch more tiles
33
+ from a rate-limited API.
34
+ n_connections: Number of connections for downloading tiles in parallel. Be careful not to overload the tile
35
+ server and to check the tile provider's terms of use before increasing this value. E.g., OpenStreetMap has
36
+ a max. value of 2 (https://operations.osmfoundation.org/policies/tiles/). If allowed to download in
37
+ parallel, a recommended value for n_connections is 16, and should never be larger than 64.
38
+ use_cache: If False, caching of the downloaded tiles will be disabled. This can be useful in resource
39
+ constrained environments, especially when using n_connections > 1, or when a tile provider's terms of use
40
+ don't allow caching.
41
 
42
  Returns:
43
  parsed request input
44
  """
45
+ from contextily.tile import bounds2img
46
+ from src.io.coordinates_pixel_conversion import _from4326_to3857
47
+
48
+ app_logger.debug(f"download raster from source:{source} with bounding box w:{w}, s:{s}, e:{e}, n:{n}.")
49
+ downloaded_raster, bbox_raster = bounds2img(
50
+ w, s, e, n, zoom=zoom, source=source, ll=True, wait=wait, max_retries=max_retries, n_connections=n_connections,
51
+ use_cache=use_cache)
52
+ xp0, yp0 = _from4326_to3857(n, e)
53
+ xp1, yp1 = _from4326_to3857(s, w)
54
+ cropped_image_ndarray, cropped_transform = crop_raster(yp1, xp1, yp0, xp0, downloaded_raster, bbox_raster)
55
+ return cropped_image_ndarray, cropped_transform
56
+
57
+
58
+ def crop_raster(w: float, s: float, e: float, n: float, raster: ndarray, raster_bbox: tuple_float,
59
+ crs: str = OUTPUT_CRS_STRING, driver: str = DRIVER_RASTERIO_GTIFF) -> tuple_ndarray_transform:
60
+ """
61
+ Crop a raster using given bounding box (w, s, e, n) values
62
+
63
+ Args:
64
+ w: cropping west edge
65
+ s: cropping south edge
66
+ e: cropping east edge
67
+ n: cropping north edge
68
+ raster: raster image to crop
69
+ raster_bbox: bounding box of raster to crop
70
+ crs: The coordinate reference system. Required in 'w' or 'w+' modes, it is ignored in 'r' or 'r+' modes.
71
+ driver: A short format driver name (e.g. "GTiff" or "JPEG") or a list of such names (see GDAL docs at
72
+ https://gdal.org/drivers/raster/index.html ). In 'w' or 'w+' modes a single name is required. In 'r' or 'r+'
73
+ modes the driver can usually be omitted. Registered drivers will be tried sequentially until a match is
74
+ found. When multiple drivers are available for a format such as JPEG2000, one of them can be selected by
75
+ using this keyword argument.
76
+
77
+ Returns:
78
+ cropped raster with its Affine transform
79
+ """
80
+ from rasterio.io import MemoryFile
81
+ from rasterio.plot import reshape_as_image
82
+ from rasterio.mask import mask as rio_mask
83
+ from shapely.geometry import Polygon
84
+ from geopandas import GeoSeries
85
+
86
+ app_logger.debug(f"raster: type {type(raster)}, raster_ext:{type(raster_bbox)}, {raster_bbox}.")
87
+ img_to_save, transform = get_transform_raster(raster, raster_bbox)
88
+ img_height, img_width, number_bands = img_to_save.shape
89
+ # https://rasterio.readthedocs.io/en/latest/topics/memory-files.html
90
+ with MemoryFile() as rio_mem_file:
91
+ app_logger.debug("writing raster in-memory to crop it with rasterio.mask.mask()")
92
+ with rio_mem_file.open(
93
+ driver=driver,
94
+ height=img_height,
95
+ width=img_width,
96
+ count=number_bands,
97
+ dtype=str(img_to_save.dtype.name),
98
+ crs=crs,
99
+ transform=transform,
100
+ ) as src_raster_rw:
101
+ for band in range(number_bands):
102
+ src_raster_rw.write(img_to_save[:, :, band], band + 1)
103
+ app_logger.debug("cropping raster in-memory with rasterio.mask.mask()")
104
+ with rio_mem_file.open() as src_raster_ro:
105
+ shapes_crop_polygon = Polygon([(n, e), (s, e), (s, w), (n, w), (n, e)])
106
+ shapes_crop = GeoSeries([shapes_crop_polygon])
107
+ app_logger.debug(f"cropping with polygon::{shapes_crop_polygon}.")
108
+ cropped_image, cropped_transform = rio_mask(src_raster_ro, shapes=shapes_crop, crop=True)
109
+ cropped_image_ndarray = reshape_as_image(cropped_image)
110
+ app_logger.info(f"cropped image::{cropped_image_ndarray.shape}.")
111
+ return cropped_image_ndarray, cropped_transform
112
+
113
+
114
+ def get_transform_raster(raster: ndarray, raster_bbox: tuple_float) -> tuple_ndarray_transform:
115
+ """
116
+ Convert the input raster image to RGB and extract the Affine
117
+
118
+ Args:
119
+ raster: raster image to geo-reference
120
+ raster_bbox: bounding box of raster to crop
121
+
122
+ Returns:
123
+ rgb raster image and its Affine transform
124
+ """
125
+ from rasterio.transform import from_origin
126
+ from numpy import array as np_array, linspace as np_linspace, uint8 as np_uint8
127
+ from PIL.Image import fromarray
128
+
129
+ app_logger.debug(f"raster: type {type(raster)}, raster_ext:{type(raster_bbox)}, {raster_bbox}.")
130
+ rgb = fromarray(np_uint8(raster)).convert('RGB')
131
+ np_rgb = np_array(rgb)
132
+ img_height, img_width, _ = np_rgb.shape
133
+
134
+ min_x, max_x, min_y, max_y = raster_bbox
135
+ app_logger.debug(f"raster rgb shape:{np_rgb.shape}, raster rgb bbox {raster_bbox}.")
136
+ x = np_linspace(min_x, max_x, img_width)
137
+ y = np_linspace(min_y, max_y, img_height)
138
+ res_x = (x[-1] - x[0]) / img_width
139
+ res_y = (y[-1] - y[0]) / img_height
140
+ transform = from_origin(x[0] - res_x / 2, y[-1] + res_y / 2, res_x, res_y)
141
+ return np_rgb, transform
src/prediction_api/predictors.py CHANGED
@@ -1,21 +1,19 @@
1
  """functions using machine learning instance model(s)"""
2
- from PIL.Image import Image
3
- from numpy import array as np_array, uint8, zeros
4
 
5
  from src import app_logger, MODEL_FOLDER
6
- from src.io.geo_helpers import get_vectorized_raster_as_geojson, get_affine_transform_from_gdal
7
  from src.io.tms2geotiff import download_extent
8
  from src.prediction_api.sam_onnx import SegmentAnythingONNX
9
  from src.utilities.constants import MODEL_ENCODER_NAME, MODEL_DECODER_NAME, DEFAULT_TMS
10
- from src.utilities.type_hints import llist_float, dict_str_int, list_dict, tuple_ndarr_int
11
-
12
 
13
  models_dict = {"fastsam": {"instance": None}}
14
 
15
 
16
  def samexporter_predict(
17
  bbox: llist_float,
18
- prompt: list[dict],
19
  zoom: float,
20
  model_name: str = "fastsam",
21
  url_tile: str = DEFAULT_TMS
@@ -31,7 +29,7 @@ def samexporter_predict(
31
  Args:
32
  bbox: coordinates bounding box
33
  prompt: machine learning input prompt
34
- zoom:
35
  model_name: machine learning model name
36
  url_tile: server url tile
37
 
@@ -51,22 +49,20 @@ def samexporter_predict(
51
  app_logger.info(f'tile_source: {url_tile}!')
52
  pt0, pt1 = bbox
53
  app_logger.info(f"downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.")
54
- img, matrix = download_extent(url_tile, pt0[0], pt0[1], pt1[0], pt1[1], zoom)
55
- app_logger.info(f"img type {type(img)} with shape/size:{img.size}, matrix:{type(matrix)}, matrix:{matrix}.")
56
-
57
- transform = get_affine_transform_from_gdal(matrix)
58
- app_logger.debug(f"transform to consume with rasterio.shapes: {type(transform)}, {transform}.")
59
 
60
  mask, n_predictions = get_raster_inference(img, prompt, models_instance, model_name)
61
  app_logger.info(f"created {n_predictions} masks, preparing conversion to geojson...")
62
  return {
63
  "n_predictions": n_predictions,
64
- **get_vectorized_raster_as_geojson(mask, matrix)
65
  }
66
 
67
 
68
  def get_raster_inference(
69
- img: Image, prompt: list_dict, models_instance: SegmentAnythingONNX, model_name: str
70
  ) -> tuple_ndarr_int:
71
  """
72
  Wrapper for rasterio Affine from_gdal method
 
1
  """functions using machine learning instance model(s)"""
2
+ from numpy import array as np_array, uint8, zeros, ndarray
 
3
 
4
  from src import app_logger, MODEL_FOLDER
5
+ from src.io.geo_helpers import get_vectorized_raster_as_geojson
6
  from src.io.tms2geotiff import download_extent
7
  from src.prediction_api.sam_onnx import SegmentAnythingONNX
8
  from src.utilities.constants import MODEL_ENCODER_NAME, MODEL_DECODER_NAME, DEFAULT_TMS
9
+ from src.utilities.type_hints import llist_float, dict_str_int, list_dict, tuple_ndarr_int, PIL_Image
 
10
 
11
  models_dict = {"fastsam": {"instance": None}}
12
 
13
 
14
  def samexporter_predict(
15
  bbox: llist_float,
16
+ prompt: list_dict,
17
  zoom: float,
18
  model_name: str = "fastsam",
19
  url_tile: str = DEFAULT_TMS
 
29
  Args:
30
  bbox: coordinates bounding box
31
  prompt: machine learning input prompt
32
+ zoom: Level of detail
33
  model_name: machine learning model name
34
  url_tile: server url tile
35
 
 
49
  app_logger.info(f'tile_source: {url_tile}!')
50
  pt0, pt1 = bbox
51
  app_logger.info(f"downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.")
52
+ img, transform = download_extent(w=pt1[1], s=pt1[0], e=pt0[1], n=pt0[0], zoom=zoom, source=url_tile)
53
+ app_logger.info(
54
+ f"img type {type(img)} with shape/size:{img.size}, transform type: {type(transform)}, transform:{transform}.")
 
 
55
 
56
  mask, n_predictions = get_raster_inference(img, prompt, models_instance, model_name)
57
  app_logger.info(f"created {n_predictions} masks, preparing conversion to geojson...")
58
  return {
59
  "n_predictions": n_predictions,
60
+ **get_vectorized_raster_as_geojson(mask, transform)
61
  }
62
 
63
 
64
  def get_raster_inference(
65
+ img: PIL_Image or ndarray, prompt: list_dict, models_instance: SegmentAnythingONNX, model_name: str
66
  ) -> tuple_ndarr_int:
67
  """
68
  Wrapper for rasterio Affine from_gdal method
src/utilities/constants.py CHANGED
@@ -1,6 +1,7 @@
1
  """Project constants"""
2
  INPUT_CRS_STRING = "EPSG:4326"
3
  OUTPUT_CRS_STRING = "EPSG:3857"
 
4
  ROOT = "/tmp"
5
  CUSTOM_RESPONSE_MESSAGES = {
6
  200: "ok",
@@ -25,3 +26,8 @@ DEFAULT_LOG_LEVEL = 'INFO'
25
  RETRY_DOWNLOAD = 3
26
  TIMEOUT_DOWNLOAD = 60
27
  CALLBACK_INTERVAL_DOWNLOAD = 0.05
 
 
 
 
 
 
1
  """Project constants"""
2
  INPUT_CRS_STRING = "EPSG:4326"
3
  OUTPUT_CRS_STRING = "EPSG:3857"
4
+ DRIVER_RASTERIO_GTIFF = "GTiff"
5
  ROOT = "/tmp"
6
  CUSTOM_RESPONSE_MESSAGES = {
7
  200: "ok",
 
26
  RETRY_DOWNLOAD = 3
27
  TIMEOUT_DOWNLOAD = 60
28
  CALLBACK_INTERVAL_DOWNLOAD = 0.05
29
+ OSM_USE_CACHE = True
30
+ OSM_WAIT = 0
31
+ OSM_MAX_RETRIES = 2
32
+ OSM_N_CONNECTIONS = 1
33
+ OSM_ZOOM_AUTO = "auto"
src/utilities/type_hints.py CHANGED
@@ -3,6 +3,7 @@ from enum import Enum
3
  from typing import TypedDict
4
 
5
  from PIL.Image import Image
 
6
  from numpy import ndarray
7
  from pydantic import BaseModel
8
 
@@ -21,6 +22,7 @@ llist_float = list[list_float]
21
  tuple_float = tuple[float]
22
  tuple_float_any = tuple[float, any]
23
  PIL_Image = Image
 
24
 
25
 
26
  class LatLngDict(BaseModel):
 
3
  from typing import TypedDict
4
 
5
  from PIL.Image import Image
6
+ from affine import Affine
7
  from numpy import ndarray
8
  from pydantic import BaseModel
9
 
 
22
  tuple_float = tuple[float]
23
  tuple_float_any = tuple[float, any]
24
  PIL_Image = Image
25
+ tuple_ndarray_transform = tuple[ndarray, Affine]
26
 
27
 
28
  class LatLngDict(BaseModel):