"""functions using machine learning instance model(s)""" from numpy import array as np_array, uint8, zeros, ndarray from src import app_logger, MODEL_FOLDER from src.io.geo_helpers import get_vectorized_raster_as_geojson from src.io.tms2geotiff import download_extent from src.prediction_api.sam_onnx import SegmentAnythingONNX from src.utilities.constants import MODEL_ENCODER_NAME, MODEL_DECODER_NAME, DEFAULT_TMS from src.utilities.type_hints import llist_float, dict_str_int, list_dict, tuple_ndarr_int, PIL_Image models_dict = {"fastsam": {"instance": None}} def samexporter_predict( bbox: llist_float, prompt: list_dict, zoom: float, model_name: str = "fastsam", url_tile: str = DEFAULT_TMS ) -> dict_str_int: """ Return predictions as a geojson from a geo-referenced image using the given input prompt. 1. if necessary instantiate a segment anything machine learning instance model 2. download a geo-referenced raster image delimited by the coordinates bounding box (bbox) 3. get a prediction image from the segment anything instance model using the input prompt 4. get a geo-referenced geojson from the prediction image Args: bbox: coordinates bounding box prompt: machine learning input prompt zoom: Level of detail model_name: machine learning model name url_tile: server url tile Returns: Affine transform """ if models_dict[model_name]["instance"] is None: app_logger.info(f"missing instance model {model_name}, instantiating it now!") model_instance = SegmentAnythingONNX( encoder_model_path=MODEL_FOLDER / MODEL_ENCODER_NAME, decoder_model_path=MODEL_FOLDER / MODEL_DECODER_NAME ) models_dict[model_name]["instance"] = model_instance app_logger.debug(f"using a {model_name} instance model...") models_instance = models_dict[model_name]["instance"] app_logger.info(f'tile_source: {url_tile}!') pt0, pt1 = bbox app_logger.info(f"downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.") img, transform = download_extent(w=pt1[1], s=pt1[0], e=pt0[1], n=pt0[0], zoom=zoom, source=url_tile) app_logger.info( f"img type {type(img)} with shape/size:{img.size}, transform type: {type(transform)}, transform:{transform}.") mask, n_predictions = get_raster_inference(img, prompt, models_instance, model_name) app_logger.info(f"created {n_predictions} masks, preparing conversion to geojson...") return { "n_predictions": n_predictions, **get_vectorized_raster_as_geojson(mask, transform) } def get_raster_inference( img: PIL_Image or ndarray, prompt: list_dict, models_instance: SegmentAnythingONNX, model_name: str ) -> tuple_ndarr_int: """ Wrapper for rasterio Affine from_gdal method Args: img: input PIL Image prompt: list of prompt dict models_instance: SegmentAnythingONNX instance model model_name: model name string Returns: raster prediction mask, prediction number """ np_img = np_array(img) app_logger.info(f"img type {type(np_img)}, prompt:{prompt}.") app_logger.debug(f"onnxruntime input shape/size (shape if PIL) {np_img.size}.") try: app_logger.debug(f"onnxruntime input shape (NUMPY) {np_img.shape}.") except Exception as e_shape: app_logger.error(f"e_shape:{e_shape}.") app_logger.info(f"instantiated model {model_name}, ENCODER {MODEL_ENCODER_NAME}, " f"DECODER {MODEL_DECODER_NAME} from {MODEL_FOLDER}: Creating embedding...") embedding = models_instance.encode(np_img) app_logger.debug(f"embedding created, running predict_masks with prompt {prompt}...") inference_out = models_instance.predict_masks(embedding, prompt) len_inference_out = len(inference_out[0, :, :, :]) app_logger.info(f"Created {len_inference_out} prediction_masks," f"shape:{inference_out.shape}, dtype:{inference_out.dtype}.") mask = zeros((inference_out.shape[2], inference_out.shape[3]), dtype=uint8) for n, m in enumerate(inference_out[0, :, :, :]): app_logger.debug(f"{n}th of prediction_masks shape {inference_out.shape}" f" => mask shape:{mask.shape}, {mask.dtype}.") mask[m > 0.0] = 255 return mask, len_inference_out