import json from unittest.mock import patch import numpy as np from src.prediction_api import predictors from src.prediction_api.predictors import get_raster_inference, samexporter_predict from tests import TEST_EVENTS_FOLDER @patch.object(predictors, "SegmentAnythingONNX") def test_get_raster_inference(segment_anything_onnx_mocked): name_fn = "samexporter_predict" with open(TEST_EVENTS_FOLDER / f"{name_fn}.json") as tst_json: inputs_outputs = json.load(tst_json) for k, input_output in inputs_outputs.items(): model_mocked = segment_anything_onnx_mocked() img = np.load(TEST_EVENTS_FOLDER / f"{name_fn}" / k / "img.npy") inference_out = np.load(TEST_EVENTS_FOLDER / f"{name_fn}" / k / "inference_out.npy") mask = np.load(TEST_EVENTS_FOLDER / f"{name_fn}" / k / "mask.npy") prompt = input_output["input"]["prompt"] model_name = input_output["input"]["model_name"] model_mocked.embed.return_value = np.array(img) model_mocked.embed.side_effect = None model_mocked.predict_masks.return_value = inference_out model_mocked.predict_masks.side_effect = None print(f"k:{k}.") output_mask, len_inference_out = get_raster_inference( img=img, prompt=prompt, models_instance=model_mocked, model_name=model_name ) assert np.array_equal(output_mask, mask) assert len_inference_out == input_output["output"]["n_predictions"] @patch.object(predictors, "get_raster_inference") @patch.object(predictors, "SegmentAnythingONNX") @patch.object(predictors, "download_extent") @patch.object(predictors, "get_vectorized_raster_as_geojson") def test_samexporter_predict( get_vectorized_raster_as_geojson_mocked, download_extent_mocked, segment_anything_onnx_mocked, get_raster_inference_mocked ): """ model_instance = SegmentAnythingONNX() img, matrix = download_extent(DEFAULT_TMS, pt0[0], pt0[1], pt1[0], pt1[1], zoom) transform = get_affine_transform_from_gdal(matrix) mask, n_predictions = get_raster_inference(img, prompt, models_instance, model_name) get_vectorized_raster_as_geojson(mask, matrix) """ aff = 1, 2, 3, 4, 5, 6 segment_anything_onnx_mocked.return_value = "SegmentAnythingONNX_instance" download_extent_mocked.return_value = np.zeros((10, 10)), aff get_raster_inference_mocked.return_value = np.ones((10, 10)), 1 get_vectorized_raster_as_geojson_mocked.return_value = {"geojson": "{}", "n_shapes_geojson": 2} output = samexporter_predict(bbox=[[1, 2], [3, 4]], prompt=[{}], zoom=10, model_name="fastsam") assert output == {"n_predictions": 1, "geojson": "{}", "n_shapes_geojson": 2}