"""functions useful to convert to/from latitude-longitude coordinates to pixel image coordinates""" from src import app_logger from src.utilities.constants import TILE_SIZE, EARTH_EQUATORIAL_RADIUS from src.utilities.type_hints import ImagePixelCoordinates, tuple_float, tuple_float_any from src.utilities.type_hints import LatLngDict def _get_latlng2pixel_projection(latlng: LatLngDict) -> ImagePixelCoordinates: from math import log, pi, sin app_logger.debug(f"latlng: {type(latlng)}, value:{latlng}.") app_logger.debug(f'latlng lat: {type(latlng.lat)}, value:{latlng.lat}.') app_logger.debug(f'latlng lng: {type(latlng.lng)}, value:{latlng.lng}.') try: sin_y: float = sin(latlng.lat * pi / 180) app_logger.debug(f"sin_y, #1:{sin_y}.") sin_y = min(max(sin_y, -0.9999), 0.9999) app_logger.debug(f"sin_y, #2:{sin_y}.") x = TILE_SIZE * (0.5 + latlng.lng / 360) app_logger.debug(f"x:{x}.") y = TILE_SIZE * (0.5 - log((1 + sin_y) / (1 - sin_y)) / (4 * pi)) app_logger.debug(f"y:{y}.") return {"x": x, "y": y} except Exception as e_get_latlng2pixel_projection: app_logger.error(f'e_get_latlng2pixel_projection:{e_get_latlng2pixel_projection}.') raise e_get_latlng2pixel_projection def _get_point_latlng_to_pixel_coordinates(latlng: LatLngDict, zoom: int | float) -> ImagePixelCoordinates: from math import floor try: world_coordinate: ImagePixelCoordinates = _get_latlng2pixel_projection(latlng) app_logger.debug(f"world_coordinate:{world_coordinate}.") scale: int = pow(2, zoom) app_logger.debug(f"scale:{scale}.") return ImagePixelCoordinates( x=floor(world_coordinate["x"] * scale), y=floor(world_coordinate["y"] * scale) ) except Exception as e_format_latlng_to_pixel_coordinates: app_logger.error(f'format_latlng_to_pixel_coordinates:{e_format_latlng_to_pixel_coordinates}.') raise e_format_latlng_to_pixel_coordinates def get_latlng_to_pixel_coordinates( latlng_origin_ne: LatLngDict, latlng_origin_sw: LatLngDict, latlng_current_point: LatLngDict, zoom: int | float, k: str ) -> ImagePixelCoordinates: """ Parse the input request lambda event Args: latlng_origin_ne: NE latitude-longitude origin point latlng_origin_sw: SW latitude-longitude origin point latlng_current_point: latitude-longitude prompt point zoom: Level of detail k: prompt type Returns: ImagePixelCoordinates: pixel image coordinate point """ app_logger.debug(f"latlng_origin - {k}: {type(latlng_origin_ne)}, value:{latlng_origin_ne}.") app_logger.debug(f"latlng_current_point - {k}: {type(latlng_current_point)}, value:{latlng_current_point}.") latlng_map_origin_ne = _get_point_latlng_to_pixel_coordinates(latlng_origin_ne, zoom) latlng_map_origin_sw = _get_point_latlng_to_pixel_coordinates(latlng_origin_sw, zoom) latlng_map_current_point = _get_point_latlng_to_pixel_coordinates(latlng_current_point, zoom) diff_coord_x = abs(latlng_map_origin_sw["x"] - latlng_map_current_point["x"]) diff_coord_y = abs(latlng_map_origin_ne["y"] - latlng_map_current_point["y"]) point = ImagePixelCoordinates(x=diff_coord_x, y=diff_coord_y) app_logger.debug(f"point type - {k}: {point}.") return point def _from4326_to3857(lat: float, lon: float) -> tuple_float or tuple_float_any: from math import radians, log, tan x_tile: float = radians(lon) * EARTH_EQUATORIAL_RADIUS y_tile: float = log(tan(radians(45 + lat / 2.0))) * EARTH_EQUATORIAL_RADIUS return x_tile, y_tile def _deg2num(lat: float, lon: float, zoom: int): from math import radians, pi, asinh, tan n = 2 ** zoom x_tile = ((lon + 180) / 360 * n) y_tile = (1 - asinh(tan(radians(lat))) / pi) * n / 2 return x_tile, y_tile