"""handle geo-referenced raster images""" from pathlib import Path from typing import List, Tuple, Dict from affine import Affine import numpy as np from src import app_logger, PROJECT_ROOT_FOLDER def load_affine_transformation_from_matrix(matrix_source_coeffs: List[float]) -> Affine: """wrapper for rasterio Affine from_gdal method Args: matrix_source_coeffs: 6 floats ordered by GDAL. Returns: Affine: Affine transform """ if len(matrix_source_coeffs) != 6: raise ValueError(f"Expected 6 coefficients, found {len(matrix_source_coeffs)}; " f"argument type: {type(matrix_source_coeffs)}.") try: a, d, b, e, c, f = (float(x) for x in matrix_source_coeffs) center = tuple.__new__(Affine, [a, b, c, d, e, f, 0.0, 0.0, 1.0]) return center * Affine.translation(-0.5, -0.5) except Exception as e: app_logger.error(f"exception:{e}, check https://github.com/rasterio/affine project for updates") raise e def get_affine_transform_from_gdal(matrix_source_coeffs: List[float] or Tuple[float]) -> Affine: """wrapper for rasterio Affine from_gdal method Args: matrix_source_coeffs: 6 floats ordered by GDAL. Returns: Affine: Affine transform """ return Affine.from_gdal(*matrix_source_coeffs) def get_vectorized_raster_as_geojson(mask: np.ndarray, matrix: Tuple[float]) -> Dict[str, int]: """ Parse the input request lambda event. Args: mask: numpy mask matrix: tuple of float to transform into an Affine transform Returns: Dict: dict containing the output geojson and the predictions number """ try: from rasterio.features import shapes from geopandas import GeoDataFrame transform = get_affine_transform_from_gdal(matrix) app_logger.info(f"transform to consume with rasterio.shapes: {type(transform)}, {transform}.") # old value for mask => band != 0 shapes_generator = ({ 'properties': {'raster_val': v}, 'geometry': s} for i, (s, v) # in enumerate(shapes(mask, mask=(band != 0), transform=rio_src.transform)) # use mask=None to avoid using source in enumerate(shapes(mask, mask=None, transform=transform)) ) app_logger.info("created shapes_generator, transform it to a polygon list...") shapes_list = list(shapes_generator) app_logger.info(f"created {len(shapes_list)} polygons.") gpd_polygonized_raster = GeoDataFrame.from_features(shapes_list, crs="EPSG:3857") app_logger.info("created a GeoDataFrame, export to geojson...") geojson = gpd_polygonized_raster.to_json(to_wgs84=True) app_logger.info("created geojson, preparing API response...") return { "geojson": geojson, "n_shapes_geojson": len(shapes_list) } except Exception as e_shape_band: app_logger.error(f"e_shape_band:{e_shape_band}.") raise e_shape_band if __name__ == '__main__': npy_file = "prediction_masks_46.27697017893455_9.616470336914064_46.11441972281433_9.264907836914064.npy" prediction_masks = np.load(Path(PROJECT_ROOT_FOLDER) / "tmp" / "try_by_steps" / "t0" / npy_file) print("#")