""" machine learning segment anything class. Modified from https://github.com/vietanhdev/samexporter/ Copyright (c) 2023 Viet Anh Nguyen Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from copy import deepcopy import cv2 import numpy as np import onnxruntime from src import app_logger class SegmentAnythingONNX: """Segmentation model using SegmentAnything""" def __init__(self, encoder_model_path, decoder_model_path) -> None: self.target_size = 1024 self.input_size = (684, 1024) # Load models providers = onnxruntime.get_available_providers() # Pop TensorRT Runtime due to crashing issues # TODO: Add back when TensorRT backend is stable providers = [p for p in providers if p != "TensorrtExecutionProvider"] if providers: app_logger.info( "Available providers for ONNXRuntime: %s", ", ".join(providers) ) else: app_logger.warning("No available providers for ONNXRuntime") self.encoder_session = onnxruntime.InferenceSession( encoder_model_path, providers=providers ) self.encoder_input_name = self.encoder_session.get_inputs()[0].name self.decoder_session = onnxruntime.InferenceSession( decoder_model_path, providers=providers ) @staticmethod def get_input_points(prompt): """Get input points""" points = [] labels = [] for mark in prompt: if mark["type"] == "point": points.append(mark["data"]) labels.append(mark["label"]) elif mark["type"] == "rectangle": points.append([mark["data"][0], mark["data"][1]]) # top left points.append( [mark["data"][2], mark["data"][3]] ) # bottom right labels.append(2) labels.append(3) points, labels = np.array(points), np.array(labels) return points, labels def run_encoder(self, encoder_inputs): """Run encoder""" output = self.encoder_session.run(None, encoder_inputs) image_embedding = output[0] return image_embedding @staticmethod def get_preprocess_shape(old_h: int, old_w: int, long_side_length: int): """ Compute the output size given input size and target long side length. """ scale = long_side_length * 1.0 / max(old_h, old_w) new_h, new_w = old_h * scale, old_w * scale new_w = int(new_w + 0.5) new_h = int(new_h + 0.5) return new_h, new_w def apply_coords(self, coords: np.ndarray, original_size, target_length): """ Expects a numpy array of length 2 in the final dimension. Requires the original image size in (H, W) format. """ old_h, old_w = original_size new_h, new_w = self.get_preprocess_shape( original_size[0], original_size[1], target_length ) coords = deepcopy(coords).astype(float) coords[..., 0] = coords[..., 0] * (new_w / old_w) coords[..., 1] = coords[..., 1] * (new_h / old_h) return coords def run_decoder( self, image_embedding, original_size, transform_matrix, prompt ): """Run decoder""" input_points, input_labels = self.get_input_points(prompt) # Add a batch index, concatenate a padding point, and transform. onnx_coord = np.concatenate( [input_points, np.array([[0.0, 0.0]])], axis=0 )[None, :, :] onnx_label = np.concatenate([input_labels, np.array([-1])], axis=0)[ None, : ].astype(np.float32) onnx_coord = self.apply_coords( onnx_coord, self.input_size, self.target_size ).astype(np.float32) # Apply the transformation matrix to the coordinates. onnx_coord = np.concatenate( [ onnx_coord, np.ones((1, onnx_coord.shape[1], 1), dtype=np.float32), ], axis=2, ) onnx_coord = np.matmul(onnx_coord, transform_matrix.T) onnx_coord = onnx_coord[:, :, :2].astype(np.float32) # Create an empty mask input and an indicator for no mask. onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32) onnx_has_mask_input = np.zeros(1, dtype=np.float32) decoder_inputs = { "image_embeddings": image_embedding, "point_coords": onnx_coord, "point_labels": onnx_label, "mask_input": onnx_mask_input, "has_mask_input": onnx_has_mask_input, "orig_im_size": np.array(self.input_size, dtype=np.float32), } masks, _, _ = self.decoder_session.run(None, decoder_inputs) # Transform the masks back to the original image size. inv_transform_matrix = np.linalg.inv(transform_matrix) transformed_masks = self.transform_masks( masks, original_size, inv_transform_matrix ) return transformed_masks @staticmethod def transform_masks(masks, original_size, transform_matrix): """Transform masks Transform the masks back to the original image size. """ output_masks = [] for batch in range(masks.shape[0]): batch_masks = [] for mask_id in range(masks.shape[1]): mask = masks[batch, mask_id] try: try: app_logger.debug(f"mask_shape transform_masks:{mask.shape}, dtype:{mask.dtype}.") except Exception as e_mask_shape_transform_masks: app_logger.error(f"e_mask_shape_transform_masks:{e_mask_shape_transform_masks}.") # raise e_mask_shape_transform_masks mask = cv2.warpAffine( mask, transform_matrix[:2], (original_size[1], original_size[0]), flags=cv2.INTER_LINEAR, ) except Exception as e_warp_affine1: app_logger.error(f"e_warp_affine1 mask shape:{mask.shape}, dtype:{mask.dtype}.") app_logger.error(f"e_warp_affine1 transform_matrix:{transform_matrix}, [:2] {transform_matrix[:2]}.") app_logger.error(f"e_warp_affine1 original_size:{original_size}.") raise e_warp_affine1 batch_masks.append(mask) output_masks.append(batch_masks) return np.array(output_masks) def encode(self, cv_image): """ Calculate embedding and metadata for a single image. """ original_size = cv_image.shape[:2] # Calculate a transformation matrix to convert to self.input_size scale_x = self.input_size[1] / cv_image.shape[1] scale_y = self.input_size[0] / cv_image.shape[0] scale = min(scale_x, scale_y) transform_matrix = np.array( [ [scale, 0, 0], [0, scale, 0], [0, 0, 1], ] ) try: cv_image = cv2.warpAffine( cv_image, transform_matrix[:2], (self.input_size[1], self.input_size[0]), flags=cv2.INTER_LINEAR, ) except Exception as e_warp_affine2: app_logger.error(f"e_warp_affine2:{e_warp_affine2}.") np_cv_image = np.array(cv_image) app_logger.error(f"e_warp_affine2 cv_image shape:{np_cv_image.shape}, dtype:{np_cv_image.dtype}.") app_logger.error(f"e_warp_affine2 transform_matrix:{transform_matrix}, [:2] {transform_matrix[:2]}") app_logger.error(f"e_warp_affine2 self.input_size:{self.input_size}.") raise e_warp_affine2 encoder_inputs = { self.encoder_input_name: cv_image.astype(np.float32), } image_embedding = self.run_encoder(encoder_inputs) return { "image_embedding": image_embedding, "original_size": original_size, "transform_matrix": transform_matrix, } def predict_masks(self, embedding, prompt): """ Predict masks for a single image. """ masks = self.run_decoder( embedding["image_embedding"], embedding["original_size"], embedding["transform_matrix"], prompt, ) return masks