import json from unittest.mock import patch import numpy as np from src.prediction_api import sam_onnx from src.prediction_api.predictors import get_raster_inference from tests import TEST_EVENTS_FOLDER @patch.object(sam_onnx, "SegmentAnythingONNX") def test_get_raster_inference( segment_anything_onnx_mocked ): name_fn = "get_raster_inference" with open(TEST_EVENTS_FOLDER / f"{name_fn}.json") as tst_json: inputs_outputs = json.load(tst_json) for k, input_output in inputs_outputs.items(): model_mocked = segment_anything_onnx_mocked() img = np.load(TEST_EVENTS_FOLDER / f"{name_fn}" / k / "img.npy") inference_out = np.load(TEST_EVENTS_FOLDER / f"{name_fn}" / k / "inference_out.npy") mask = np.load(TEST_EVENTS_FOLDER / f"{name_fn}" / k / "mask.npy") prompt = input_output["input"]["prompt"] model_name = input_output["input"]["model_name"] model_mocked.embed.return_value = np.array(img) model_mocked.embed.side_effect = None model_mocked.predict_masks.return_value = inference_out model_mocked.predict_masks.side_effect = None print(f"k:{k}.") output_mask, output_inference_out = get_raster_inference( img=img, prompt=prompt, models_instance=model_mocked, model_name=model_name ) assert np.array_equal(output_mask, mask) assert np.array_equal(output_inference_out, inference_out)