import json import time from http import HTTPStatus from pathlib import Path from typing import Dict from aws_lambda_powertools.event_handler import content_types from aws_lambda_powertools.utilities.typing import LambdaContext from src import app_logger from src.io.coordinates_pixel_conversion import get_latlng_to_pixel_coordinates, get_point_latlng_to_pixel_coordinates from src.prediction_api.predictors import samexporter_predict from src.utilities.constants import CUSTOM_RESPONSE_MESSAGES, ROOT from src.utilities.serialize import serialize from src.utilities.utilities import base64_decode def get_response(status: int, start_time: float, request_id: str, response_body: Dict = None) -> str: """ Return a response for frontend clients. Args: status: status response start_time: request start time (float) request_id: str response_body: dict we embed into our response Returns: str: json response """ app_logger.info(f"response_body:{response_body}.") response_body["duration_run"] = time.time() - start_time response_body["message"] = CUSTOM_RESPONSE_MESSAGES[status] response_body["request_id"] = request_id response = { "statusCode": status, "header": {"Content-Type": content_types.APPLICATION_JSON}, "body": json.dumps(response_body), "isBase64Encoded": False } app_logger.info(f"response type:{type(response)} => {response}.") return json.dumps(response) def get_parsed_bbox_points(request_input: Dict) -> Dict: app_logger.info(f"try to parsing input request {request_input}...") bbox = request_input["bbox"] app_logger.info(f"request bbox: {type(bbox)}, value:{bbox}.") ne = bbox["ne"] sw = bbox["sw"] app_logger.info(f"request ne: {type(ne)}, value:{ne}.") app_logger.info(f"request sw: {type(sw)}, value:{sw}.") ne_latlng = [float(ne["lat"]), float(ne["lng"])] sw_latlng = [float(sw["lat"]), float(sw["lng"])] bbox = [ne_latlng, sw_latlng] zoom = int(request_input["zoom"]) for prompt in request_input["prompt"]: app_logger.info(f"current prompt: {type(prompt)}, value:{prompt}.") data = prompt["data"] if prompt["type"] == "rectangle": app_logger.info(f"current data points: {type(data)}, value:{data}.") data_ne = data["ne"] app_logger.info(f"current data_ne point: {type(data_ne)}, value:{data_ne}.") data_sw = data["sw"] app_logger.info(f"current data_sw point: {type(data_sw)}, value:{data_sw}.") diff_pixel_coords_origin_data_ne = get_latlng_to_pixel_coordinates(ne, sw, data_ne, zoom, "ne") app_logger.info(f'current diff prompt ne: {type(data)}, {data} => {diff_pixel_coords_origin_data_ne}.') diff_pixel_coords_origin_data_sw = get_latlng_to_pixel_coordinates(ne, sw, data_sw, zoom, "sw") app_logger.info(f'current diff prompt sw: {type(data)}, {data} => {diff_pixel_coords_origin_data_sw}.') prompt["data"] = [ diff_pixel_coords_origin_data_ne["x"], diff_pixel_coords_origin_data_ne["y"], diff_pixel_coords_origin_data_sw["x"], diff_pixel_coords_origin_data_sw["y"] ] elif prompt["type"] == "point": current_point = get_latlng_to_pixel_coordinates(ne, sw, data, zoom, "point") app_logger.info(f"current prompt: {type(current_point)}, value:{current_point}.") new_prompt_data = [current_point['x'], current_point['y']] app_logger.info(f"new_prompt_data: {type(new_prompt_data)}, value:{new_prompt_data}.") prompt["data"] = new_prompt_data else: raise ValueError("valid prompt types are only 'point' and 'rectangle'") app_logger.info(f"bbox => {bbox}.") app_logger.info(f'## request_input["prompt"] updated => {request_input["prompt"]}.') app_logger.info(f"unpacking elaborated {request_input}...") return { "bbox": bbox, "prompt": request_input["prompt"], "zoom": zoom } def lambda_handler(event: dict, context: LambdaContext): app_logger.info(f"start with aws_request_id:{context.aws_request_id}.") start_time = time.time() if "version" in event: app_logger.info(f"event version: {event['version']}.") try: app_logger.info(f"event:{json.dumps(event)}...") app_logger.info(f"context:{context}...") try: body = event["body"] except Exception as e_constants1: app_logger.error(f"e_constants1:{e_constants1}.") body = event app_logger.info(f"body, #1: {type(body)}, {body}...") if isinstance(body, str): body_decoded_str = base64_decode(body) app_logger.info(f"body_decoded_str: {type(body_decoded_str)}, {body_decoded_str}...") body = json.loads(body_decoded_str) app_logger.info(f"body, #2: {type(body)}, {body}...") try: prompt_latlng = body["prompt"] app_logger.info(f"prompt_latlng:{prompt_latlng}.") body_request = get_parsed_bbox_points(body) app_logger.info(f"body_request=> {type(body_request)}, {body_request}.") body_response = samexporter_predict( body_request["bbox"], body_request["prompt"], body_request["zoom"], prompt_latlng ) app_logger.info(f"output body_response:{body_response}.") response = get_response(HTTPStatus.OK.value, start_time, context.aws_request_id, body_response) except Exception as ex2: app_logger.error(f"exception2:{ex2}.") response = get_response(HTTPStatus.UNPROCESSABLE_ENTITY.value, start_time, context.aws_request_id, {}) except Exception as ex1: app_logger.error(f"exception1:{ex1}.") response = get_response(HTTPStatus.INTERNAL_SERVER_ERROR.value, start_time, context.aws_request_id, {}) app_logger.info(f"response_dumped:{response}...") return response