--- title: SamGIS emoji: 🗺️ colorFrom: red colorTo: blue sdk: docker pinned: false license: mit --- ## Segment Anything models It's possible to prepare the model files using https://github.com/vietanhdev/samexporter/ or using the ones from https://huggingface.co/aletrn/sam-quantized (copy them within the folder `/machine_learning_models`). ## SamGIS - HuggingFace version The SamGIS HuggingSpace url is https://huggingface.co/spaces/aletrn/samgis. Build the docker image this way: ```bash # clean any old active containers docker stop $(docker ps -a -q); docker rm $(docker ps -a -q) # build the base docker image from the repository root folder using ARGs: # - DEPENDENCY_GROUP=fastapi used by poetry # VITE__MAP_DESCRIPTION, VITE__PATHNAME_CHECK, VITE__SAMGIS_SPACE used by 'docker build' ( set -o allexport && source <(cat ./static/.env|grep VITE__) && set +o allexport; env|grep VITE__; docker build . -f dockerfiles/dockerfile-samgis-base --progress=plain \ --build-arg DEPENDENCY_GROUP=fastapi \ --build-arg VITE__MAP_DESCRIPTION=${VITE__MAP_DESCRIPTION} \ --build-arg VITE__PATHNAME_CHECK=${VITE__PATHNAME_CHECK} \ --build-arg VITE__SAMGIS_SPACE=${VITE__SAMGIS_SPACE} \ --tag registry.gitlab.com/aletrn/gis-prediction ) # build the image, use the tag "samgis-huggingface" docker build . --tag example-docker-namespace/samgis-huggingface --progress=plain ``` Run the container (keep it on background) and show logs ```bash docker run -d --name samgis-huggingface -p 7860:7860 example-docker-namespace/samgis-huggingface; docker logs -f samgis-huggingface ``` Test it with curl using a json payload: ```bash URL=http://localhost:7860/infer_samgis curl -d@./events/payload_point_eolie.json -H 'accept: application/json' ${URL} ``` or better visiting the swagger page on http://localhost:7860/docs ## SamGIS - lambda AWS version Build the docker image this way: ```bash # clean any old active containers docker stop $(docker ps -a -q); docker rm $(docker ps -a -q) # build the base docker image with the docker aws repository tag docker build . -f dockerfiles/dockerfile-samgis-base --build-arg DEPENDENCY_GROUP=aws_lambda \ --tag example-docker-namespace/samgis-base-aws-lambda --progress=plain # build the final docker image docker build . -f dockerfiles/dockerfile-lambda-fastsam-api --tag example-docker-namespace/lambda-fastsam-api --progress=plain ``` Run the container (keep it on background) and show logs ```bash docker run -d --name lambda-fastsam-api -p 8080:8080 lambda-fastsam-api; docker logs -f lambda-fastsam-api ``` Test it with curl using a json payload: ```bash URL=http://localhost:8080/2015-03-31/functions/function/invocations curl -d@./events/payload_point_eolie.json -H 'accept: application/json' ${URL} ``` ### Publish the aws lambda docker image Login on aws ECR with the correct aws profile (change the example `example-docker-namespace/` repository url with the one from the [ECR push command instructions page](https://eu-west-1.console.aws.amazon.com/ecr/repositories/)). ### Dependencies installation and local tests The docker build process needs only the base dependency group plus the `aws_lambda` or `fastapi` optional one. Install also the `test` and/or `docs` groups if needed. ### Tests Tests are defined in the `tests` folder in this project. Use PIP to install the test dependencies and run tests. ```bash python -m pytest --cov=samgis --cov-report=term-missing && coverage html ``` ### How to update the static documentation with sphinx This project documentation uses sphinx-apidoc: it's a tool for automatic generation of Sphinx sources that, using the autodoc extension, document a whole package in the style of other automatic API documentation tools. See the [documentation page](https://www.sphinx-doc.org/en/master/man/sphinx-apidoc.html) for details. Run the command from the project root: ```bash # missing docs folder (run from project root) initialize this way cd docs && sphinx-quickstart -p SamGIS -r 1.0.0 -l python --master index # update docs folder (from project root) sphinx-apidoc -f -o docs samgis ``` Then it's possible to generate the HTML pages ```bash cd docs && make html && ../ # to clean old files cd docs && make clean html && cd ../ ``` The static documentation it's now ready at the path `docs/_build/html/index.html`.