# Press the green button in the gutter to run the script. import os import numpy as np from src import app_logger, MODEL_FOLDER from src.io.tms2geotiff import download_extent from src.prediction_api.sam_onnx import SegmentAnythingONNX from src.utilities.constants import ROOT, MODEL_ENCODER_NAME, ZOOM, SOURCE_TYPE, DEFAULT_TMS, MODEL_DECODER_NAME from src.utilities.serialize import serialize from src.utilities.type_hints import input_float_tuples from src.utilities.utilities import get_system_info def zip_arrays(arr1, arr2): arr1_list = arr1.tolist() arr2_list = arr2.tolist() # return {serialize(k): serialize(v) for k, v in zip(arr1_list, arr2_list)} d = {} for n1, n2 in enumerate(zip(arr1_list, arr2_list)): app_logger.info(f"n1:{n1}, type {type(n1)}, n2:{n2}, type {type(n2)}.") n1f = str(n1) n2f = str(n2) app_logger.info(f"n1:{n1}=>{n1f}, n2:{n2}=>{n2f}.") d[n1f] = n2f app_logger.info(f"zipped dict:{d}.") return d def samexporter_predict(bbox: input_float_tuples, prompt: list[dict], zoom: float = ZOOM) -> dict: import tempfile try: os.environ['MPLCONFIGDIR'] = ROOT get_system_info() except Exception as e: app_logger.error(f"Error while setting 'MPLCONFIGDIR':{e}.") with tempfile.NamedTemporaryFile(prefix=f"{SOURCE_TYPE}_", suffix=".tif", dir=ROOT) as image_input_tmp: for coord in bbox: app_logger.info(f"bbox coord:{coord}, type:{type(coord)}.") app_logger.info(f"start download_extent using bbox:{bbox}, type:{type(bbox)}, download image...") pt0 = bbox[0] pt1 = bbox[1] img, matrix = download_extent(DEFAULT_TMS, pt0[0], pt0[1], pt1[0], pt1[1], zoom) app_logger.info(f"img type {type(img)}, matrix type {type(matrix)}.") np_img = np.array(img) app_logger.info(f"np_img type {type(np_img)}.") app_logger.info(f"np_img dtype {np_img.dtype}, shape {np_img.shape}.") app_logger.info(f"geotiff created with size/shape {img.size} and transform matrix {str(matrix)}, start to initialize SamGeo instance:") app_logger.info(f"use ENCODER model {MODEL_ENCODER_NAME} from {MODEL_FOLDER})...") app_logger.info(f"use DECODER model {MODEL_DECODER_NAME} from {MODEL_FOLDER})...") model = SegmentAnythingONNX( encoder_model_path=MODEL_FOLDER / MODEL_ENCODER_NAME, decoder_model_path=MODEL_FOLDER / MODEL_DECODER_NAME ) app_logger.info(f"model instantiated, creating embedding...") embedding = model.encode(np_img) app_logger.info(f"embedding created, running predict_masks...") prediction_masks = model.predict_masks(embedding, prompt) app_logger.info(f"predict_masks terminated") app_logger.info(f"prediction masks shape:{prediction_masks.shape}, {prediction_masks.dtype}.") mask = np.zeros((prediction_masks.shape[2], prediction_masks.shape[3]), dtype=np.uint8) for m in prediction_masks[0, :, :, :]: mask[m > 0.0] = 255 mask_unique_values, mask_unique_values_count = serialize(np.unique(mask, return_counts=True)) app_logger.info(f"mask_unique_values:{mask_unique_values}.") app_logger.info(f"mask_unique_values_count:{mask_unique_values_count}.") output = { "img_size": serialize(img.size), "mask_unique_values_count": zip_arrays(mask_unique_values, mask_unique_values_count), "masks_dtype": serialize(prediction_masks.dtype), "masks_shape": serialize(prediction_masks.shape), "matrix": serialize(matrix) } app_logger.info(f"output:{output}.") return output