File size: 1,205 Bytes
5131b33
5b4c169
 
07fca4f
4ffc5f1
07fca4f
 
5131b33
d43b4cf
07fca4f
604d57b
 
4c4e8e3
5131b33
07fca4f
13559a3
 
 
203b12e
07fca4f
 
 
13559a3
 
5b4c169
13559a3
 
07fca4f
 
 
 
 
 
5b4c169
07fca4f
5b4c169
 
 
 
07fca4f
 
b96ef93
 
4c4e8e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
import requests
import os
import spaces 


API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
api_token = os.environ.get("TOKEN")
headers = {"Authorization": f"Bearer {api_token}"}
@spaces.GPU
def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

def generate_response(prompt):
    payload = {
        "inputs": prompt,
        "parameters": {
            "max_new_tokens": 2000,
            "temperature": 0.7,
            "top_p": 0.95,
            "do_sample": True
        }
    }
    
    response = query(payload)
    
    if isinstance(response, list) and len(response) > 0:
        return response[0].get('generated_text', '')
    elif isinstance(response, dict) and 'generated_text' in response:
        return response['generated_text']
    return "Désolé, je n'ai pas pu générer de réponse."

def chatbot(message, history):
    response = generate_response(message)
    return response

iface = gr.ChatInterface(
    fn=chatbot,
    title="Chatbot Meta-Llama-3-8B-Instruct",
    description="Interagissez avec le modèle Meta-Llama-3-8B-Instruct."
)

iface.launch()