import dataset # type: ignore from dataset import load_dataset #type: ignore import transformers from transformers import TFAutoModelForSequenceClassification, AutoTokenizer model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-uncased") tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") ds = load_dataset("stanfordnlp/sst2") sst2_dataset = load_dataset("glue", "sst2", split="train") def encode(examples): return tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, padding="max_length") sst2_dataset = sst2_dataset.map(encode, batched=True) sst2_dataset = sst2_dataset.map(lambda examples: {"labels": examples["label"]}, batched=True)