import datasets from datasets import load_dataset import transformers from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments, pipeline model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2) # 2 classes : positif et négatif tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # 2 classes : positif et négatif ds = load_dataset("stanfordnlp/sst2") sst2_dataset = load_dataset("glue", "sst2", split="train") def encode(examples): return tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, padding="max_length") sst2_dataset = sst2_dataset.map(encode, batched=True) sst2_dataset = sst2_dataset.map(lambda examples: {"labels": examples["label"]}, batched=True) training_args = TrainingArguments( per_device_train_batch_size=8, evaluation_strategy="epoch", logging_dir="./logs", output_dir="./results", num_train_epochs=3, ) trainer = Trainer( model=model, args=training_args, train_dataset=encoded_dataset["train"], eval_dataset=encoded_dataset["test"], ) import os if not os.path.exists("./fine_tuned_model"): trainer.train() # Sauvegarder le modèle fine-tuné et le tokenizer model.save_pretrained("./fine_tuned_model") tokenizer.save_pretrained("./fine_tuned_model") else: # Charger le modèle fine-tuné model = BertForSequenceClassification.from_pretrained("./fine_tuned_model") tokenizer = BertTokenizer.from_pretrained("./fine_tuned_model") sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) def generate_response(message): result = sentiment_analysis(message)[0] return f"Label: {result['label']}, Score: {result['score']}" gr.ChatInterface(fn=generate_response).launch()