import requests import gradio as gr import os api_token = os.environ.get("TOKEN") API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-llama-3-8B-Instruct" headers = {"Authorization": f"Bearer {api_token}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) if response.status_code == 200: return response.json() else: raise Exception(f"Request failed with status code {response.status_code}: {response.text}") def detect_sentiment(message): prompt = f"Détecte le sentiment de ce message. Réponds par 'positif' ou 'négatif' :\nMessage : \"{message}\"" response = query({"inputs": prompt}) generated_texts = response.get('generated_text', []) if generated_texts: sentiment = generated_texts[0].strip().lower() return sentiment else: raise Exception("No generated_text found in API response") def sentiment_analysis_interface(message): sentiment = detect_sentiment(message) return sentiment # Créer l'interface Gradio iface = gr.Interface( fn=sentiment_analysis_interface, inputs="text", outputs="text", title="Détection de Sentiment", description="Entrez un message pour détecter si le sentiment est positif ou négatif.", ) # Lancer l'interface iface.launch()