File size: 1,419 Bytes
ed60c2e 5b95e34 ed60c2e 90ed2ce ed60c2e 5b95e34 ed60c2e 90ed2ce 316b0d8 ed60c2e 316b0d8 ed60c2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
"""Gradio app that showcases Danish offensive text models."""
import warnings
from numba.core.errors import NumbaDeprecationWarning
warnings.filterwarnings("ignore", category=NumbaDeprecationWarning)
import gradio as gr
from transformers import pipeline
from typing import Tuple, Dict, List
def main():
pipe = pipeline(
task="text-classification",
model="alexandrainst/da-offensive-detection-small",
)
examples = [
"Din store idiot.",
"Jeg er glad for at være her.",
"Hvem tror du, du er?",
"Har du hæklefejl i kysen?",
"Hej med dig, jeg hedder Peter.",
"Fuck hvor er det dejligt, det her :)",
"🍆",
"😊",
]
def classification(text) -> Tuple[Dict[str, float], dict]:
output: List[dict] = pipe(text)[0]
print(text, output)
return {output["label"]: output["score"]}
demo = gr.Interface(
fn=classification,
inputs=gr.Textbox(placeholder="Enter sentence here...", value=examples[0]),
outputs=gr.Label(),
examples=examples,
title="Danish Offensive Text Detection",
description="""
Detect offensive text in Danish. Write any text in the box below, and the model will predict whether the text is offensive or not:
_Also, be patient, as this demo is running on a CPU!_""",
)
demo.launch()
if __name__ == "__main__":
main()
|