Spaces:
Sleeping
Sleeping
alex buz
commited on
Commit
•
68ba2e8
1
Parent(s):
e6868fd
new
Browse files- 3t_dropdown copy 4.py +46 -0
- 3t_dropdown copy 5.py +63 -0
- 3t_dropdown copy 6.py +68 -0
- 3t_dropdown copy 7.py +71 -0
- app copy 6.py +125 -0
- app copy 7.py +125 -0
- app copy 8.py +146 -0
- app copy 9.py +176 -0
- app.py +51 -29
- requirements.txt +22 -0
3t_dropdown copy 4.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from openai import OpenAI
|
3 |
+
|
4 |
+
def predict(message, history, character, api_key, progress=gr.Progress()):
|
5 |
+
client = OpenAI(api_key=api_key)
|
6 |
+
history_openai_format = []
|
7 |
+
for human, assistant in history:
|
8 |
+
history_openai_format.append({"role": "user", "content": human})
|
9 |
+
history_openai_format.append({"role": "assistant", "content": assistant})
|
10 |
+
history_openai_format.append({"role": "user", "content": message})
|
11 |
+
|
12 |
+
response = client.chat.completions.create(
|
13 |
+
model='gpt-4',
|
14 |
+
messages=history_openai_format,
|
15 |
+
temperature=1.0,
|
16 |
+
stream=True
|
17 |
+
)
|
18 |
+
|
19 |
+
partial_message = ""
|
20 |
+
for chunk in progress.tqdm(response, desc="Generating"):
|
21 |
+
if chunk.choices[0].delta.content:
|
22 |
+
partial_message += chunk.choices[0].delta.content
|
23 |
+
yield partial_message
|
24 |
+
|
25 |
+
def reset(character):
|
26 |
+
return [], []
|
27 |
+
|
28 |
+
# Gradio app
|
29 |
+
with gr.Blocks() as demo:
|
30 |
+
gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{'My Chatbot'}</h1>")
|
31 |
+
bot = gr.Chatbot(render=False)
|
32 |
+
dropdown = gr.Dropdown(
|
33 |
+
["Character 1", "Character 2", "Character 3", "Character 4", "Character 5", "Character 6", "Character 7", "Character 8", "Character 9", "Character 10", "Character 11", "Character 12", "Character 13"],
|
34 |
+
label="Characters",
|
35 |
+
info="Select the character that you'd like to speak to",
|
36 |
+
value="Character 1"
|
37 |
+
)
|
38 |
+
chat = gr.ChatInterface(
|
39 |
+
fn=predict,
|
40 |
+
chatbot=bot,
|
41 |
+
additional_inputs=[dropdown, gr.Textbox(label="API Key")],
|
42 |
+
)
|
43 |
+
dropdown.change(fn=reset, inputs=dropdown, outputs=[bot, chat.chatbot_state])
|
44 |
+
|
45 |
+
demo.queue()
|
46 |
+
demo.launch()
|
3t_dropdown copy 5.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from openai import OpenAI
|
3 |
+
import threading
|
4 |
+
|
5 |
+
pause_event = threading.Event()
|
6 |
+
|
7 |
+
def predict(message, history, character, api_key, progress=gr.Progress()):
|
8 |
+
client = OpenAI(api_key=api_key)
|
9 |
+
history_openai_format = []
|
10 |
+
for human, assistant in history:
|
11 |
+
history_openai_format.append({"role": "user", "content": human})
|
12 |
+
history_openai_format.append({"role": "assistant", "content": assistant})
|
13 |
+
history_openai_format.append({"role": "user", "content": message})
|
14 |
+
|
15 |
+
response = client.chat.completions.create(
|
16 |
+
model='gpt-4',
|
17 |
+
messages=history_openai_format,
|
18 |
+
temperature=1.0,
|
19 |
+
stream=True
|
20 |
+
)
|
21 |
+
|
22 |
+
partial_message = ""
|
23 |
+
for chunk in progress.tqdm(response, desc="Generating"):
|
24 |
+
if pause_event.is_set():
|
25 |
+
break
|
26 |
+
if chunk.choices[0].delta.content:
|
27 |
+
partial_message += chunk.choices[0].delta.content
|
28 |
+
yield partial_message
|
29 |
+
|
30 |
+
def pause():
|
31 |
+
pause_event.set()
|
32 |
+
|
33 |
+
def resume():
|
34 |
+
pause_event.clear()
|
35 |
+
|
36 |
+
def reset(character):
|
37 |
+
return [], []
|
38 |
+
|
39 |
+
# Gradio app
|
40 |
+
with gr.Blocks() as demo:
|
41 |
+
gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{'My Chatbot'}</h1>")
|
42 |
+
bot = gr.Chatbot(render=False)
|
43 |
+
dropdown = gr.Dropdown(
|
44 |
+
["Character 1", "Character 2", "Character 3", "Character 4", "Character 5", "Character 6", "Character 7", "Character 8", "Character 9", "Character 10", "Character 11", "Character 12", "Character 13"],
|
45 |
+
label="Characters",
|
46 |
+
info="Select the character that you'd like to speak to",
|
47 |
+
value="Character 1"
|
48 |
+
)
|
49 |
+
chat = gr.ChatInterface(
|
50 |
+
fn=predict,
|
51 |
+
chatbot=bot,
|
52 |
+
additional_inputs=[dropdown, gr.Textbox(label="API Key")],
|
53 |
+
)
|
54 |
+
dropdown.change(fn=reset, inputs=dropdown, outputs=[bot, chat.chatbot_state])
|
55 |
+
|
56 |
+
pause_button = gr.Button("Pause")
|
57 |
+
resume_button = gr.Button("Resume")
|
58 |
+
|
59 |
+
pause_button.click(fn=pause, inputs=None, outputs=None)
|
60 |
+
resume_button.click(fn=resume, inputs=None, outputs=None)
|
61 |
+
|
62 |
+
demo.queue()
|
63 |
+
demo.launch()
|
3t_dropdown copy 6.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from openai import OpenAI
|
3 |
+
import threading
|
4 |
+
|
5 |
+
pause_event = threading.Event()
|
6 |
+
resume_event = threading.Event()
|
7 |
+
|
8 |
+
def predict(message, history, character, api_key, progress=gr.Progress()):
|
9 |
+
client = OpenAI(api_key=api_key)
|
10 |
+
history_openai_format = []
|
11 |
+
for human, assistant in history:
|
12 |
+
history_openai_format.append({"role": "user", "content": human})
|
13 |
+
history_openai_format.append({"role": "assistant", "content": assistant})
|
14 |
+
history_openai_format.append({"role": "user", "content": message})
|
15 |
+
|
16 |
+
response = client.chat.completions.create(
|
17 |
+
model='gpt-4o',
|
18 |
+
messages=history_openai_format,
|
19 |
+
temperature=1.0,
|
20 |
+
stream=True
|
21 |
+
)
|
22 |
+
|
23 |
+
partial_message = ""
|
24 |
+
for chunk in progress.tqdm(response, desc="Generating"):
|
25 |
+
while pause_event.is_set():
|
26 |
+
resume_event.wait()
|
27 |
+
if chunk.choices[0].delta.content:
|
28 |
+
partial_message += chunk.choices[0].delta.content
|
29 |
+
yield partial_message
|
30 |
+
|
31 |
+
def pause():
|
32 |
+
pause_event.set()
|
33 |
+
resume_event.clear()
|
34 |
+
|
35 |
+
def resume():
|
36 |
+
pause_event.clear()
|
37 |
+
resume_event.set()
|
38 |
+
|
39 |
+
def reset(character):
|
40 |
+
return [], []
|
41 |
+
|
42 |
+
# Gradio app
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{'My Chatbot'}</h1>")
|
45 |
+
bot = gr.Chatbot(render=False)
|
46 |
+
dropdown = gr.Dropdown(
|
47 |
+
["Character 1", "Character 2", "Character 3", "Character 4", "Character 5", "Character 6", "Character 7", "Character 8", "Character 9", "Character 10", "Character 11", "Character 12", "Character 13"],
|
48 |
+
label="Characters",
|
49 |
+
info="Select the character that you'd like to speak to",
|
50 |
+
value="Character 1"
|
51 |
+
)
|
52 |
+
api_key_input = gr.Textbox(label="API Key")
|
53 |
+
|
54 |
+
chat = gr.ChatInterface(
|
55 |
+
fn=predict,
|
56 |
+
chatbot=bot,
|
57 |
+
additional_inputs=[dropdown, api_key_input],
|
58 |
+
)
|
59 |
+
dropdown.change(fn=reset, inputs=dropdown, outputs=[bot, chat.chatbot_state])
|
60 |
+
|
61 |
+
pause_button = gr.Button("Pause")
|
62 |
+
resume_button = gr.Button("Resume")
|
63 |
+
|
64 |
+
pause_button.click(fn=pause, inputs=None, outputs=None)
|
65 |
+
resume_button.click(fn=resume, inputs=None, outputs=None)
|
66 |
+
|
67 |
+
demo.queue()
|
68 |
+
demo.launch()
|
3t_dropdown copy 7.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from openai import OpenAI
|
3 |
+
import threading
|
4 |
+
|
5 |
+
pause_event = threading.Event()
|
6 |
+
resume_event = threading.Event()
|
7 |
+
|
8 |
+
def predict(message, history, character, api_key, progress=gr.Progress()):
|
9 |
+
client = OpenAI(api_key=api_key)
|
10 |
+
history_openai_format = []
|
11 |
+
for human, assistant in history:
|
12 |
+
history_openai_format.append({"role": "user", "content": human})
|
13 |
+
history_openai_format.append({"role": "assistant", "content": assistant})
|
14 |
+
history_openai_format.append({"role": "user", "content": message})
|
15 |
+
|
16 |
+
response = client.chat.completions.create(
|
17 |
+
model='gpt-4',
|
18 |
+
messages=history_openai_format,
|
19 |
+
temperature=1.0,
|
20 |
+
stream=True
|
21 |
+
)
|
22 |
+
|
23 |
+
partial_message = ""
|
24 |
+
for chunk in progress.tqdm(response, desc="Generating"):
|
25 |
+
while pause_event.is_set():
|
26 |
+
resume_event.wait()
|
27 |
+
if chunk.choices[0].delta.content:
|
28 |
+
partial_message += chunk.choices[0].delta.content
|
29 |
+
yield partial_message
|
30 |
+
|
31 |
+
def pause():
|
32 |
+
pause_event.set()
|
33 |
+
resume_event.clear()
|
34 |
+
return "Paused"
|
35 |
+
|
36 |
+
def resume():
|
37 |
+
pause_event.clear()
|
38 |
+
resume_event.set()
|
39 |
+
return "Resumed"
|
40 |
+
|
41 |
+
def reset(character):
|
42 |
+
return [], []
|
43 |
+
|
44 |
+
# Gradio app
|
45 |
+
with gr.Blocks() as demo:
|
46 |
+
gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{'My Chatbot'}</h1>")
|
47 |
+
bot = gr.Chatbot(render=False)
|
48 |
+
dropdown = gr.Dropdown(
|
49 |
+
["Character 1", "Character 2", "Character 3", "Character 4", "Character 5", "Character 6", "Character 7", "Character 8", "Character 9", "Character 10", "Character 11", "Character 12", "Character 13"],
|
50 |
+
label="Characters",
|
51 |
+
info="Select the character that you'd like to speak to",
|
52 |
+
value="Character 1"
|
53 |
+
)
|
54 |
+
api_key_input = gr.Textbox(label="API Key")
|
55 |
+
|
56 |
+
chat = gr.ChatInterface(
|
57 |
+
fn=predict,
|
58 |
+
chatbot=bot,
|
59 |
+
additional_inputs=[dropdown, api_key_input],
|
60 |
+
)
|
61 |
+
dropdown.change(fn=reset, inputs=dropdown, outputs=[bot, chat.chatbot_state])
|
62 |
+
|
63 |
+
pause_button = gr.Button("Pause")
|
64 |
+
resume_button = gr.Button("Resume")
|
65 |
+
status = gr.Textbox(label="Status", interactive=False)
|
66 |
+
|
67 |
+
pause_button.click(fn=pause, inputs=None, outputs=status)
|
68 |
+
resume_button.click(fn=resume, inputs=None, outputs=status)
|
69 |
+
|
70 |
+
demo.queue()
|
71 |
+
demo.launch()
|
app copy 6.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
import numpy as np
|
5 |
+
from openai import OpenAI
|
6 |
+
|
7 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
8 |
+
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
9 |
+
|
10 |
+
def predict(message, history, api_key, is_paused):
|
11 |
+
client = OpenAI(api_key=api_key)
|
12 |
+
history_openai_format = []
|
13 |
+
for human, assistant in history:
|
14 |
+
history_openai_format.append({"role": "user", "content": human})
|
15 |
+
history_openai_format.append({"role": "assistant", "content": assistant})
|
16 |
+
history_openai_format.append({"role": "user", "content": message})
|
17 |
+
|
18 |
+
response = client.chat.completions.create(
|
19 |
+
model='gpt-4o',
|
20 |
+
messages=history_openai_format,
|
21 |
+
temperature=1.0,
|
22 |
+
stream=True
|
23 |
+
)
|
24 |
+
|
25 |
+
partial_message = ""
|
26 |
+
for chunk in response:
|
27 |
+
print(is_paused)
|
28 |
+
if is_paused[0]: # Check if paused
|
29 |
+
|
30 |
+
while is_paused[0]:
|
31 |
+
print('paused')
|
32 |
+
time.sleep(0.1)
|
33 |
+
print('not paused')
|
34 |
+
if chunk.choices[0].delta.content:
|
35 |
+
partial_message += chunk.choices[0].delta.content
|
36 |
+
yield partial_message
|
37 |
+
|
38 |
+
def chat_with_api_key(api_key, message, history, is_paused):
|
39 |
+
accumulated_message = ""
|
40 |
+
for partial_message in predict(message, history, api_key, is_paused):
|
41 |
+
if is_paused[0]: # Check if paused
|
42 |
+
break
|
43 |
+
accumulated_message = partial_message
|
44 |
+
history.append((message, accumulated_message))
|
45 |
+
yield message, [[message, accumulated_message]]
|
46 |
+
|
47 |
+
def transcribe(audio):
|
48 |
+
if audio is None:
|
49 |
+
return "No audio recorded."
|
50 |
+
sr, y = audio
|
51 |
+
y = y.astype(np.float32)
|
52 |
+
y /= np.max(np.abs(y))
|
53 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
54 |
+
|
55 |
+
def answer(transcription):
|
56 |
+
context = "You are a chatbot answering general questions"
|
57 |
+
result = qa_model(question=transcription, context=context)
|
58 |
+
return result['answer']
|
59 |
+
|
60 |
+
def process_audio(audio):
|
61 |
+
if audio is None:
|
62 |
+
return "No audio recorded.", []
|
63 |
+
transcription = transcribe(audio)
|
64 |
+
answer_result = answer(transcription)
|
65 |
+
return transcription, [[transcription, answer_result]]
|
66 |
+
|
67 |
+
def update_output(api_key, audio_input, state, is_paused):
|
68 |
+
if is_paused[0]: # Check if paused
|
69 |
+
yield "", state # Return current state without making changes
|
70 |
+
else:
|
71 |
+
message = transcribe(audio_input)
|
72 |
+
responses = chat_with_api_key(api_key, message, state, is_paused)
|
73 |
+
accumulated_response = ""
|
74 |
+
for response, updated_state in responses:
|
75 |
+
if is_paused[0]: # Check if paused
|
76 |
+
break
|
77 |
+
accumulated_response = response
|
78 |
+
yield accumulated_response, updated_state
|
79 |
+
|
80 |
+
def clear_all():
|
81 |
+
return None, "", []
|
82 |
+
|
83 |
+
def toggle_pause(is_paused):
|
84 |
+
is_paused[0] = not is_paused[0]
|
85 |
+
return is_paused
|
86 |
+
|
87 |
+
def update_button_label(is_paused):
|
88 |
+
return "Resume" if is_paused[0] else "Pause"
|
89 |
+
|
90 |
+
with gr.Blocks() as demo:
|
91 |
+
answer_output = gr.Chatbot(label="Answer Result")
|
92 |
+
with gr.Row():
|
93 |
+
audio_input = gr.Audio(label="Audio Input", sources=["microphone"], type="numpy")
|
94 |
+
with gr.Column():
|
95 |
+
api_key = gr.Textbox(label="API Key", placeholder="Enter your API key", type="password")
|
96 |
+
transcription_output = gr.Textbox(label="Transcription")
|
97 |
+
clear_button = gr.Button("Clear")
|
98 |
+
pause_button = gr.Button("Pause")
|
99 |
+
|
100 |
+
state = gr.State([])
|
101 |
+
is_paused = gr.State([False]) # Using a list to hold the mutable pause state
|
102 |
+
|
103 |
+
audio_input.stop_recording(
|
104 |
+
fn=update_output,
|
105 |
+
inputs=[api_key, audio_input, state, is_paused],
|
106 |
+
outputs=[transcription_output, answer_output]
|
107 |
+
)
|
108 |
+
|
109 |
+
clear_button.click(
|
110 |
+
fn=clear_all,
|
111 |
+
inputs=[],
|
112 |
+
outputs=[audio_input, transcription_output, answer_output]
|
113 |
+
)
|
114 |
+
|
115 |
+
pause_button.click(
|
116 |
+
fn=toggle_pause,
|
117 |
+
inputs=[is_paused],
|
118 |
+
outputs=[is_paused]
|
119 |
+
).then(
|
120 |
+
fn=update_button_label,
|
121 |
+
inputs=[is_paused],
|
122 |
+
outputs=[pause_button]
|
123 |
+
)
|
124 |
+
|
125 |
+
demo.launch()
|
app copy 7.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
import numpy as np
|
5 |
+
from openai import OpenAI
|
6 |
+
|
7 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
8 |
+
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
9 |
+
|
10 |
+
def predict(message, history, api_key, is_paused):
|
11 |
+
client = OpenAI(api_key=api_key)
|
12 |
+
history_openai_format = []
|
13 |
+
for human, assistant in history:
|
14 |
+
history_openai_format.append({"role": "user", "content": human})
|
15 |
+
history_openai_format.append({"role": "assistant", "content": assistant})
|
16 |
+
history_openai_format.append({"role": "user", "content": message})
|
17 |
+
|
18 |
+
response = client.chat.completions.create(
|
19 |
+
model='gpt-4o',
|
20 |
+
messages=history_openai_format,
|
21 |
+
temperature=1.0,
|
22 |
+
stream=True
|
23 |
+
)
|
24 |
+
|
25 |
+
partial_message = ""
|
26 |
+
for chunk in response:
|
27 |
+
print(is_paused)
|
28 |
+
if is_paused[0]: # Check if paused
|
29 |
+
|
30 |
+
while is_paused[0]:
|
31 |
+
print('paused')
|
32 |
+
time.sleep(0.1)
|
33 |
+
print('not paused')
|
34 |
+
if chunk.choices[0].delta.content:
|
35 |
+
partial_message += chunk.choices[0].delta.content
|
36 |
+
yield partial_message
|
37 |
+
|
38 |
+
def chat_with_api_key(api_key, message, history, is_paused):
|
39 |
+
accumulated_message = ""
|
40 |
+
for partial_message in predict(message, history, api_key, is_paused):
|
41 |
+
if is_paused[0]: # Check if paused
|
42 |
+
break
|
43 |
+
accumulated_message = partial_message
|
44 |
+
history.append((message, accumulated_message))
|
45 |
+
yield message, [[message, accumulated_message]]
|
46 |
+
|
47 |
+
def transcribe(audio):
|
48 |
+
if audio is None:
|
49 |
+
return "No audio recorded."
|
50 |
+
sr, y = audio
|
51 |
+
y = y.astype(np.float32)
|
52 |
+
y /= np.max(np.abs(y))
|
53 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
54 |
+
|
55 |
+
def answer(transcription):
|
56 |
+
context = "You are a chatbot answering general questions"
|
57 |
+
result = qa_model(question=transcription, context=context)
|
58 |
+
return result['answer']
|
59 |
+
|
60 |
+
def process_audio(audio):
|
61 |
+
if audio is None:
|
62 |
+
return "No audio recorded.", []
|
63 |
+
transcription = transcribe(audio)
|
64 |
+
answer_result = answer(transcription)
|
65 |
+
return transcription, [[transcription, answer_result]]
|
66 |
+
|
67 |
+
def update_output(api_key, audio_input, state, is_paused):
|
68 |
+
if is_paused[0]: # Check if paused
|
69 |
+
yield "", state # Return current state without making changes
|
70 |
+
else:
|
71 |
+
message = transcribe(audio_input)
|
72 |
+
responses = chat_with_api_key(api_key, message, state, is_paused)
|
73 |
+
accumulated_response = ""
|
74 |
+
for response, updated_state in responses:
|
75 |
+
if is_paused[0]: # Check if paused
|
76 |
+
break
|
77 |
+
accumulated_response = response
|
78 |
+
yield accumulated_response, updated_state
|
79 |
+
|
80 |
+
def clear_all():
|
81 |
+
return None, "", []
|
82 |
+
|
83 |
+
def toggle_pause(is_paused):
|
84 |
+
is_paused[0] = not is_paused[0]
|
85 |
+
return is_paused
|
86 |
+
|
87 |
+
def update_button_label(is_paused):
|
88 |
+
return "Resume" if is_paused[0] else "Pause"
|
89 |
+
|
90 |
+
with gr.Blocks() as demo:
|
91 |
+
answer_output = gr.Chatbot(label="Answer Result")
|
92 |
+
with gr.Row():
|
93 |
+
audio_input = gr.Audio(label="Audio Input", sources=["microphone"], type="numpy")
|
94 |
+
with gr.Column():
|
95 |
+
api_key = gr.Textbox(label="API Key", placeholder="Enter your API key", type="password")
|
96 |
+
transcription_output = gr.Textbox(label="Transcription")
|
97 |
+
clear_button = gr.Button("Clear")
|
98 |
+
pause_button = gr.Button("Pause")
|
99 |
+
|
100 |
+
state = gr.State([])
|
101 |
+
is_paused = gr.State([False]) # Using a list to hold the mutable pause state
|
102 |
+
|
103 |
+
audio_input.stop_recording(
|
104 |
+
fn=update_output,
|
105 |
+
inputs=[api_key, audio_input, state, is_paused],
|
106 |
+
outputs=[transcription_output, answer_output]
|
107 |
+
)
|
108 |
+
|
109 |
+
clear_button.click(
|
110 |
+
fn=clear_all,
|
111 |
+
inputs=[],
|
112 |
+
outputs=[audio_input, transcription_output, answer_output]
|
113 |
+
)
|
114 |
+
|
115 |
+
pause_button.click(
|
116 |
+
fn=toggle_pause,
|
117 |
+
inputs=[is_paused],
|
118 |
+
outputs=[is_paused]
|
119 |
+
).then(
|
120 |
+
fn=update_button_label,
|
121 |
+
inputs=[is_paused],
|
122 |
+
outputs=[pause_button]
|
123 |
+
)
|
124 |
+
|
125 |
+
demo.launch()
|
app copy 8.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
import numpy as np
|
5 |
+
from openai import OpenAI
|
6 |
+
import threading
|
7 |
+
import queue
|
8 |
+
|
9 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
10 |
+
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
11 |
+
|
12 |
+
class PubSub:
|
13 |
+
def __init__(self):
|
14 |
+
self.subscribers = []
|
15 |
+
|
16 |
+
def subscribe(self, callback):
|
17 |
+
self.subscribers.append(callback)
|
18 |
+
|
19 |
+
def publish(self, message):
|
20 |
+
for subscriber in self.subscribers:
|
21 |
+
subscriber(message)
|
22 |
+
|
23 |
+
def predict(message, history, api_key, is_paused, pubsub):
|
24 |
+
def run_prediction():
|
25 |
+
client = OpenAI(api_key=api_key)
|
26 |
+
history_openai_format = []
|
27 |
+
for human, assistant in history:
|
28 |
+
history_openai_format.append({"role": "user", "content": human})
|
29 |
+
history_openai_format.append({"role": "assistant", "content": assistant})
|
30 |
+
history_openai_format.append({"role": "user", "content": message})
|
31 |
+
|
32 |
+
response = client.chat.completions.create(
|
33 |
+
model='gpt-4o',
|
34 |
+
messages=history_openai_format,
|
35 |
+
temperature=1.0,
|
36 |
+
stream=True
|
37 |
+
)
|
38 |
+
|
39 |
+
partial_message = ""
|
40 |
+
for chunk in response:
|
41 |
+
if is_paused[0]:
|
42 |
+
while is_paused[0]:
|
43 |
+
time.sleep(0.1)
|
44 |
+
if chunk.choices[0].delta.content:
|
45 |
+
partial_message += chunk.choices[0].delta.content
|
46 |
+
pubsub.publish(partial_message)
|
47 |
+
|
48 |
+
thread = threading.Thread(target=run_prediction)
|
49 |
+
thread.start()
|
50 |
+
|
51 |
+
def chat_with_api_key(api_key, message, history, is_paused):
|
52 |
+
pubsub = PubSub()
|
53 |
+
result_queue = queue.Queue()
|
54 |
+
|
55 |
+
def update_message(partial_message):
|
56 |
+
result_queue.put(partial_message)
|
57 |
+
|
58 |
+
pubsub.subscribe(update_message)
|
59 |
+
predict(message, history, api_key, is_paused, pubsub)
|
60 |
+
|
61 |
+
while True:
|
62 |
+
try:
|
63 |
+
accumulated_message = result_queue.get(timeout=0.1)
|
64 |
+
history.append((message, accumulated_message))
|
65 |
+
yield message, [[message, accumulated_message]]
|
66 |
+
except queue.Empty:
|
67 |
+
if not any(thread.is_alive() for thread in threading.enumerate() if thread != threading.current_thread()):
|
68 |
+
break
|
69 |
+
|
70 |
+
def transcribe(audio):
|
71 |
+
if audio is None:
|
72 |
+
return "No audio recorded."
|
73 |
+
sr, y = audio
|
74 |
+
y = y.astype(np.float32)
|
75 |
+
y /= np.max(np.abs(y))
|
76 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
77 |
+
|
78 |
+
def answer(transcription):
|
79 |
+
context = "You are a chatbot answering general questions"
|
80 |
+
result = qa_model(question=transcription, context=context)
|
81 |
+
return result['answer']
|
82 |
+
|
83 |
+
def process_audio(audio):
|
84 |
+
if audio is None:
|
85 |
+
return "No audio recorded.", []
|
86 |
+
transcription = transcribe(audio)
|
87 |
+
answer_result = answer(transcription)
|
88 |
+
return transcription, [[transcription, answer_result]]
|
89 |
+
|
90 |
+
def update_output(api_key, audio_input, state, is_paused):
|
91 |
+
if is_paused[0]:
|
92 |
+
yield "", state
|
93 |
+
else:
|
94 |
+
message = transcribe(audio_input)
|
95 |
+
responses = chat_with_api_key(api_key, message, state, is_paused)
|
96 |
+
for response, updated_state in responses:
|
97 |
+
if is_paused[0]:
|
98 |
+
break
|
99 |
+
yield response, updated_state
|
100 |
+
|
101 |
+
def clear_all():
|
102 |
+
return None, "", []
|
103 |
+
|
104 |
+
def toggle_pause(is_paused):
|
105 |
+
is_paused[0] = not is_paused[0]
|
106 |
+
return is_paused
|
107 |
+
|
108 |
+
def update_button_label(is_paused):
|
109 |
+
return "Resume" if is_paused[0] else "Pause"
|
110 |
+
|
111 |
+
with gr.Blocks() as demo:
|
112 |
+
answer_output = gr.Chatbot(label="Answer Result")
|
113 |
+
with gr.Row():
|
114 |
+
audio_input = gr.Audio(label="Audio Input", sources=["microphone"], type="numpy")
|
115 |
+
with gr.Column():
|
116 |
+
api_key = gr.Textbox(label="API Key", placeholder="Enter your API key", type="password")
|
117 |
+
transcription_output = gr.Textbox(label="Transcription")
|
118 |
+
clear_button = gr.Button("Clear")
|
119 |
+
pause_button = gr.Button("Pause")
|
120 |
+
|
121 |
+
state = gr.State([])
|
122 |
+
is_paused = gr.State([False])
|
123 |
+
|
124 |
+
audio_input.stop_recording(
|
125 |
+
fn=update_output,
|
126 |
+
inputs=[api_key, audio_input, state, is_paused],
|
127 |
+
outputs=[transcription_output, answer_output]
|
128 |
+
)
|
129 |
+
|
130 |
+
clear_button.click(
|
131 |
+
fn=clear_all,
|
132 |
+
inputs=[],
|
133 |
+
outputs=[audio_input, transcription_output, answer_output]
|
134 |
+
)
|
135 |
+
|
136 |
+
pause_button.click(
|
137 |
+
fn=toggle_pause,
|
138 |
+
inputs=[is_paused],
|
139 |
+
outputs=[is_paused]
|
140 |
+
).then(
|
141 |
+
fn=update_button_label,
|
142 |
+
inputs=[is_paused],
|
143 |
+
outputs=[pause_button]
|
144 |
+
)
|
145 |
+
|
146 |
+
demo.launch()
|
app copy 9.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
import numpy as np
|
5 |
+
from openai import OpenAI
|
6 |
+
import threading
|
7 |
+
import queue
|
8 |
+
|
9 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
10 |
+
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
11 |
+
|
12 |
+
class PubSub:
|
13 |
+
def __init__(self):
|
14 |
+
self.subscribers = []
|
15 |
+
|
16 |
+
def subscribe(self, callback):
|
17 |
+
self.subscribers.append(callback)
|
18 |
+
|
19 |
+
def publish(self, message):
|
20 |
+
for subscriber in self.subscribers:
|
21 |
+
subscriber(message)
|
22 |
+
|
23 |
+
def predict(message, history, api_key, is_paused, pubsub):
|
24 |
+
def run_prediction():
|
25 |
+
client = OpenAI(api_key=api_key)
|
26 |
+
history_openai_format = []
|
27 |
+
for human, assistant in history:
|
28 |
+
history_openai_format.append({"role": "user", "content": human})
|
29 |
+
history_openai_format.append({"role": "assistant", "content": assistant})
|
30 |
+
history_openai_format.append({"role": "user", "content": message})
|
31 |
+
|
32 |
+
response = client.chat.completions.create(
|
33 |
+
model='gpt-4o',
|
34 |
+
messages=history_openai_format,
|
35 |
+
temperature=1.0,
|
36 |
+
stream=True
|
37 |
+
)
|
38 |
+
|
39 |
+
partial_message = ""
|
40 |
+
for chunk in response:
|
41 |
+
if is_paused[0]:
|
42 |
+
while is_paused[0]:
|
43 |
+
time.sleep(0.1)
|
44 |
+
if chunk.choices[0].delta.content:
|
45 |
+
partial_message += chunk.choices[0].delta.content
|
46 |
+
pubsub.publish(partial_message)
|
47 |
+
|
48 |
+
thread = threading.Thread(target=run_prediction)
|
49 |
+
thread.start()
|
50 |
+
|
51 |
+
def chat_with_api_key(api_key, message, history, is_paused):
|
52 |
+
pubsub = PubSub()
|
53 |
+
result_queue = queue.Queue()
|
54 |
+
|
55 |
+
def update_message(partial_message):
|
56 |
+
result_queue.put(partial_message)
|
57 |
+
|
58 |
+
pubsub.subscribe(update_message)
|
59 |
+
predict(message, history, api_key, is_paused, pubsub)
|
60 |
+
|
61 |
+
while True:
|
62 |
+
try:
|
63 |
+
accumulated_message = result_queue.get(timeout=0.1)
|
64 |
+
history.append((message, accumulated_message))
|
65 |
+
yield message, [[message, accumulated_message]]
|
66 |
+
except queue.Empty:
|
67 |
+
if not any(thread.is_alive() for thread in threading.enumerate() if thread != threading.current_thread()):
|
68 |
+
break
|
69 |
+
|
70 |
+
def transcribe(audio):
|
71 |
+
if audio is None:
|
72 |
+
return "No audio recorded."
|
73 |
+
sr, y = audio
|
74 |
+
y = y.astype(np.float32)
|
75 |
+
y /= np.max(np.abs(y))
|
76 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
77 |
+
|
78 |
+
def answer(transcription):
|
79 |
+
context = "You are a chatbot answering general questions"
|
80 |
+
result = qa_model(question=transcription, context=context)
|
81 |
+
return result['answer']
|
82 |
+
|
83 |
+
def process_audio(audio):
|
84 |
+
if audio is None:
|
85 |
+
return "No audio recorded.", []
|
86 |
+
transcription = transcribe(audio)
|
87 |
+
answer_result = answer(transcription)
|
88 |
+
return transcription, [[transcription, answer_result]]
|
89 |
+
|
90 |
+
def update_output(api_key, audio_input, state, is_paused):
|
91 |
+
if is_paused[0]:
|
92 |
+
yield "", state
|
93 |
+
else:
|
94 |
+
message = transcribe(audio_input)
|
95 |
+
responses = chat_with_api_key(api_key, message, state, is_paused)
|
96 |
+
for response, updated_state in responses:
|
97 |
+
if is_paused[0]:
|
98 |
+
break
|
99 |
+
yield response, updated_state
|
100 |
+
|
101 |
+
def clear_all():
|
102 |
+
return None, "", []
|
103 |
+
|
104 |
+
def toggle_pause(is_paused):
|
105 |
+
is_paused[0] = not is_paused[0]
|
106 |
+
return is_paused
|
107 |
+
|
108 |
+
def update_button_label(is_paused):
|
109 |
+
return "Resume" if is_paused[0] else "Pause"
|
110 |
+
|
111 |
+
with gr.Blocks() as demo:
|
112 |
+
gr.HTML("""
|
113 |
+
<script>
|
114 |
+
function ensureScrollable() {
|
115 |
+
var chatbox = document.querySelector('.chatbot');
|
116 |
+
if (chatbox) {
|
117 |
+
chatbox.style.overflowY = 'auto';
|
118 |
+
chatbox.style.maxHeight = '300px';
|
119 |
+
}
|
120 |
+
}
|
121 |
+
|
122 |
+
function scrollToBottom() {
|
123 |
+
var chatbox = document.querySelector('.chatbot');
|
124 |
+
if (chatbox) {
|
125 |
+
chatbox.scrollTop = chatbox.scrollHeight;
|
126 |
+
}
|
127 |
+
}
|
128 |
+
|
129 |
+
function setupScrolling() {
|
130 |
+
ensureScrollable();
|
131 |
+
setInterval(scrollToBottom, 100);
|
132 |
+
}
|
133 |
+
|
134 |
+
if (document.readyState === 'loading') {
|
135 |
+
document.addEventListener('DOMContentLoaded', setupScrolling);
|
136 |
+
} else {
|
137 |
+
setupScrolling();
|
138 |
+
}
|
139 |
+
</script>
|
140 |
+
""")
|
141 |
+
|
142 |
+
answer_output = gr.Chatbot(label="Answer Result", height=300)
|
143 |
+
with gr.Row():
|
144 |
+
audio_input = gr.Audio(label="Audio Input", sources=["microphone"], type="numpy")
|
145 |
+
with gr.Column():
|
146 |
+
api_key = gr.Textbox(label="API Key", placeholder="Enter your API key", type="password")
|
147 |
+
transcription_output = gr.Textbox(label="Transcription")
|
148 |
+
clear_button = gr.Button("Clear")
|
149 |
+
pause_button = gr.Button("Pause")
|
150 |
+
|
151 |
+
state = gr.State([])
|
152 |
+
is_paused = gr.State([False])
|
153 |
+
|
154 |
+
audio_input.stop_recording(
|
155 |
+
fn=update_output,
|
156 |
+
inputs=[api_key, audio_input, state, is_paused],
|
157 |
+
outputs=[transcription_output, answer_output]
|
158 |
+
)
|
159 |
+
|
160 |
+
clear_button.click(
|
161 |
+
fn=clear_all,
|
162 |
+
inputs=[],
|
163 |
+
outputs=[audio_input, transcription_output, answer_output]
|
164 |
+
)
|
165 |
+
|
166 |
+
pause_button.click(
|
167 |
+
fn=toggle_pause,
|
168 |
+
inputs=[is_paused],
|
169 |
+
outputs=[is_paused]
|
170 |
+
).then(
|
171 |
+
fn=update_button_label,
|
172 |
+
inputs=[is_paused],
|
173 |
+
outputs=[pause_button]
|
174 |
+
)
|
175 |
+
|
176 |
+
demo.launch()
|
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import numpy as np
|
@@ -6,8 +7,7 @@ from openai import OpenAI
|
|
6 |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
7 |
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
8 |
|
9 |
-
def predict(message, history, api_key):
|
10 |
-
print('in predict')
|
11 |
client = OpenAI(api_key=api_key)
|
12 |
history_openai_format = []
|
13 |
for human, assistant in history:
|
@@ -24,19 +24,25 @@ def predict(message, history, api_key):
|
|
24 |
|
25 |
partial_message = ""
|
26 |
for chunk in response:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
if chunk.choices[0].delta.content:
|
28 |
-
print(111, chunk.choices[0].delta.content)
|
29 |
partial_message += chunk.choices[0].delta.content
|
30 |
yield partial_message
|
31 |
|
32 |
-
def chat_with_api_key(api_key, message, history):
|
33 |
-
print('in chat_with_api_key')
|
34 |
accumulated_message = ""
|
35 |
-
for partial_message in predict(message, history, api_key):
|
|
|
|
|
36 |
accumulated_message = partial_message
|
37 |
history.append((message, accumulated_message))
|
38 |
-
|
39 |
-
yield message,[[message, accumulated_message]]
|
40 |
|
41 |
def transcribe(audio):
|
42 |
if audio is None:
|
@@ -44,7 +50,6 @@ def transcribe(audio):
|
|
44 |
sr, y = audio
|
45 |
y = y.astype(np.float32)
|
46 |
y /= np.max(np.abs(y))
|
47 |
-
|
48 |
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
49 |
|
50 |
def answer(transcription):
|
@@ -59,18 +64,29 @@ def process_audio(audio):
|
|
59 |
answer_result = answer(transcription)
|
60 |
return transcription, [[transcription, answer_result]]
|
61 |
|
62 |
-
def update_output(api_key, audio_input, state):
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
accumulated_response =
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
71 |
def clear_all():
|
72 |
return None, "", []
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
with gr.Blocks() as demo:
|
75 |
answer_output = gr.Chatbot(label="Answer Result")
|
76 |
with gr.Row():
|
@@ -79,19 +95,16 @@ with gr.Blocks() as demo:
|
|
79 |
api_key = gr.Textbox(label="API Key", placeholder="Enter your API key", type="password")
|
80 |
transcription_output = gr.Textbox(label="Transcription")
|
81 |
clear_button = gr.Button("Clear")
|
|
|
|
|
82 |
state = gr.State([])
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
audio_input.stop_recording(
|
91 |
-
fn=process_audio,
|
92 |
-
inputs=[audio_input],
|
93 |
-
outputs=[transcription_output, answer_output]
|
94 |
-
)
|
95 |
|
96 |
clear_button.click(
|
97 |
fn=clear_all,
|
@@ -99,5 +112,14 @@ with gr.Blocks() as demo:
|
|
99 |
outputs=[audio_input, transcription_output, answer_output]
|
100 |
)
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
demo.launch()
|
|
|
1 |
+
import time
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
import numpy as np
|
|
|
7 |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
8 |
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
9 |
|
10 |
+
def predict(message, history, api_key, is_paused):
|
|
|
11 |
client = OpenAI(api_key=api_key)
|
12 |
history_openai_format = []
|
13 |
for human, assistant in history:
|
|
|
24 |
|
25 |
partial_message = ""
|
26 |
for chunk in response:
|
27 |
+
print(is_paused)
|
28 |
+
if is_paused[0]: # Check if paused
|
29 |
+
|
30 |
+
while is_paused[0]:
|
31 |
+
print('paused')
|
32 |
+
time.sleep(0.1)
|
33 |
+
print('not paused')
|
34 |
if chunk.choices[0].delta.content:
|
|
|
35 |
partial_message += chunk.choices[0].delta.content
|
36 |
yield partial_message
|
37 |
|
38 |
+
def chat_with_api_key(api_key, message, history, is_paused):
|
|
|
39 |
accumulated_message = ""
|
40 |
+
for partial_message in predict(message, history, api_key, is_paused):
|
41 |
+
if is_paused[0]: # Check if paused
|
42 |
+
break
|
43 |
accumulated_message = partial_message
|
44 |
history.append((message, accumulated_message))
|
45 |
+
yield message, [[message, accumulated_message]]
|
|
|
46 |
|
47 |
def transcribe(audio):
|
48 |
if audio is None:
|
|
|
50 |
sr, y = audio
|
51 |
y = y.astype(np.float32)
|
52 |
y /= np.max(np.abs(y))
|
|
|
53 |
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
54 |
|
55 |
def answer(transcription):
|
|
|
64 |
answer_result = answer(transcription)
|
65 |
return transcription, [[transcription, answer_result]]
|
66 |
|
67 |
+
def update_output(api_key, audio_input, state, is_paused):
|
68 |
+
if is_paused[0]: # Check if paused
|
69 |
+
yield "", state # Return current state without making changes
|
70 |
+
else:
|
71 |
+
message = transcribe(audio_input)
|
72 |
+
responses = chat_with_api_key(api_key, message, state, is_paused)
|
73 |
+
accumulated_response = ""
|
74 |
+
for response, updated_state in responses:
|
75 |
+
if is_paused[0]: # Check if paused
|
76 |
+
break
|
77 |
+
accumulated_response = response
|
78 |
+
yield accumulated_response, updated_state
|
79 |
|
80 |
def clear_all():
|
81 |
return None, "", []
|
82 |
|
83 |
+
def toggle_pause(is_paused):
|
84 |
+
is_paused[0] = not is_paused[0]
|
85 |
+
return is_paused
|
86 |
+
|
87 |
+
def update_button_label(is_paused):
|
88 |
+
return "Resume" if is_paused[0] else "Pause"
|
89 |
+
|
90 |
with gr.Blocks() as demo:
|
91 |
answer_output = gr.Chatbot(label="Answer Result")
|
92 |
with gr.Row():
|
|
|
95 |
api_key = gr.Textbox(label="API Key", placeholder="Enter your API key", type="password")
|
96 |
transcription_output = gr.Textbox(label="Transcription")
|
97 |
clear_button = gr.Button("Clear")
|
98 |
+
pause_button = gr.Button("Pause")
|
99 |
+
|
100 |
state = gr.State([])
|
101 |
+
is_paused = gr.State([False]) # Using a list to hold the mutable pause state
|
102 |
+
|
103 |
+
audio_input.stop_recording(
|
104 |
+
fn=update_output,
|
105 |
+
inputs=[api_key, audio_input, state, is_paused],
|
106 |
+
outputs=[transcription_output, answer_output]
|
107 |
+
)
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
clear_button.click(
|
110 |
fn=clear_all,
|
|
|
112 |
outputs=[audio_input, transcription_output, answer_output]
|
113 |
)
|
114 |
|
115 |
+
pause_button.click(
|
116 |
+
fn=toggle_pause,
|
117 |
+
inputs=[is_paused],
|
118 |
+
outputs=[is_paused]
|
119 |
+
).then(
|
120 |
+
fn=update_button_label,
|
121 |
+
inputs=[is_paused],
|
122 |
+
outputs=[pause_button]
|
123 |
+
)
|
124 |
|
125 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
aiofiles==23.2.1
|
|
|
|
|
2 |
altair==5.3.0
|
3 |
annotated-types==0.7.0
|
4 |
anyio==4.4.0
|
@@ -9,6 +11,8 @@ click==8.1.7
|
|
9 |
colorama==0.4.6
|
10 |
contourpy==1.2.1
|
11 |
cycler==0.12.1
|
|
|
|
|
12 |
dnspython==2.6.1
|
13 |
email_validator==2.2.0
|
14 |
fastapi==0.111.1
|
@@ -16,9 +20,11 @@ fastapi-cli==0.0.4
|
|
16 |
ffmpy==0.3.2
|
17 |
filelock==3.15.4
|
18 |
fonttools==4.53.1
|
|
|
19 |
fsspec==2024.6.1
|
20 |
gradio==4.29.0
|
21 |
gradio_client==0.16.1
|
|
|
22 |
h11==0.14.0
|
23 |
httpcore==1.0.5
|
24 |
httptools==0.6.1
|
@@ -28,17 +34,28 @@ idna==3.7
|
|
28 |
importlib_resources==6.4.0
|
29 |
intel-openmp==2021.4.0
|
30 |
Jinja2==3.1.4
|
|
|
|
|
31 |
jsonschema==4.23.0
|
32 |
jsonschema-specifications==2023.12.1
|
33 |
kiwisolver==1.4.5
|
|
|
|
|
|
|
|
|
|
|
34 |
markdown-it-py==3.0.0
|
35 |
MarkupSafe==2.1.5
|
|
|
36 |
matplotlib==3.9.1
|
37 |
mdurl==0.1.2
|
38 |
mkl==2021.4.0
|
39 |
mpmath==1.3.0
|
|
|
|
|
40 |
networkx==3.3
|
41 |
numpy==1.26.4
|
|
|
42 |
orjson==3.10.6
|
43 |
packaging==24.1
|
44 |
pandas==2.2.2
|
@@ -48,6 +65,7 @@ pydantic_core==2.20.1
|
|
48 |
pydub==0.25.1
|
49 |
Pygments==2.18.0
|
50 |
pyparsing==3.1.2
|
|
|
51 |
python-dateutil==2.9.0.post0
|
52 |
python-dotenv==1.0.1
|
53 |
python-multipart==0.0.9
|
@@ -65,9 +83,11 @@ shellingham==1.5.4
|
|
65 |
six==1.16.0
|
66 |
sniffio==1.3.1
|
67 |
SpeechRecognition==3.10.4
|
|
|
68 |
starlette==0.37.2
|
69 |
sympy==1.13.0
|
70 |
tbb==2021.13.0
|
|
|
71 |
tokenizers==0.19.1
|
72 |
tomlkit==0.12.0
|
73 |
toolz==0.12.1
|
@@ -76,9 +96,11 @@ torchaudio==2.3.1
|
|
76 |
tqdm==4.66.4
|
77 |
transformers==4.42.4
|
78 |
typer==0.12.3
|
|
|
79 |
typing_extensions==4.12.2
|
80 |
tzdata==2024.1
|
81 |
urllib3==2.2.2
|
82 |
uvicorn==0.30.1
|
83 |
watchfiles==0.22.0
|
84 |
websockets==11.0.3
|
|
|
|
1 |
aiofiles==23.2.1
|
2 |
+
aiohttp==3.9.5
|
3 |
+
aiosignal==1.3.1
|
4 |
altair==5.3.0
|
5 |
annotated-types==0.7.0
|
6 |
anyio==4.4.0
|
|
|
11 |
colorama==0.4.6
|
12 |
contourpy==1.2.1
|
13 |
cycler==0.12.1
|
14 |
+
dataclasses-json==0.6.7
|
15 |
+
distro==1.9.0
|
16 |
dnspython==2.6.1
|
17 |
email_validator==2.2.0
|
18 |
fastapi==0.111.1
|
|
|
20 |
ffmpy==0.3.2
|
21 |
filelock==3.15.4
|
22 |
fonttools==4.53.1
|
23 |
+
frozenlist==1.4.1
|
24 |
fsspec==2024.6.1
|
25 |
gradio==4.29.0
|
26 |
gradio_client==0.16.1
|
27 |
+
greenlet==3.0.3
|
28 |
h11==0.14.0
|
29 |
httpcore==1.0.5
|
30 |
httptools==0.6.1
|
|
|
34 |
importlib_resources==6.4.0
|
35 |
intel-openmp==2021.4.0
|
36 |
Jinja2==3.1.4
|
37 |
+
jsonpatch==1.33
|
38 |
+
jsonpointer==3.0.0
|
39 |
jsonschema==4.23.0
|
40 |
jsonschema-specifications==2023.12.1
|
41 |
kiwisolver==1.4.5
|
42 |
+
langchain==0.2.8
|
43 |
+
langchain-community==0.2.7
|
44 |
+
langchain-core==0.2.20
|
45 |
+
langchain-text-splitters==0.2.2
|
46 |
+
langsmith==0.1.88
|
47 |
markdown-it-py==3.0.0
|
48 |
MarkupSafe==2.1.5
|
49 |
+
marshmallow==3.21.3
|
50 |
matplotlib==3.9.1
|
51 |
mdurl==0.1.2
|
52 |
mkl==2021.4.0
|
53 |
mpmath==1.3.0
|
54 |
+
multidict==6.0.5
|
55 |
+
mypy-extensions==1.0.0
|
56 |
networkx==3.3
|
57 |
numpy==1.26.4
|
58 |
+
openai==1.35.14
|
59 |
orjson==3.10.6
|
60 |
packaging==24.1
|
61 |
pandas==2.2.2
|
|
|
65 |
pydub==0.25.1
|
66 |
Pygments==2.18.0
|
67 |
pyparsing==3.1.2
|
68 |
+
Pypubsub==4.0.3
|
69 |
python-dateutil==2.9.0.post0
|
70 |
python-dotenv==1.0.1
|
71 |
python-multipart==0.0.9
|
|
|
83 |
six==1.16.0
|
84 |
sniffio==1.3.1
|
85 |
SpeechRecognition==3.10.4
|
86 |
+
SQLAlchemy==2.0.31
|
87 |
starlette==0.37.2
|
88 |
sympy==1.13.0
|
89 |
tbb==2021.13.0
|
90 |
+
tenacity==8.5.0
|
91 |
tokenizers==0.19.1
|
92 |
tomlkit==0.12.0
|
93 |
toolz==0.12.1
|
|
|
96 |
tqdm==4.66.4
|
97 |
transformers==4.42.4
|
98 |
typer==0.12.3
|
99 |
+
typing-inspect==0.9.0
|
100 |
typing_extensions==4.12.2
|
101 |
tzdata==2024.1
|
102 |
urllib3==2.2.2
|
103 |
uvicorn==0.30.1
|
104 |
watchfiles==0.22.0
|
105 |
websockets==11.0.3
|
106 |
+
yarl==1.9.4
|