import gradio as gr from transformers import pipeline import numpy as np transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad") def transcribe(audio): if audio is None: return "No audio recorded." sr, y = audio y = y.astype(np.float32) y /= np.max(np.abs(y)) return transcriber({"sampling_rate": sr, "raw": y})["text"] def answer(transcription): context = "You are chatbot answering general questions" print(transcription) result = qa_model(question=transcription, context=context) print(result) return result['answer'] def process_audio(audio): if audio is None: return "No audio recorded.", "" transcription = transcribe(audio) answer_result = answer(transcription) return transcription, answer_result def clear_all(): return None, "", "" with gr.Blocks() as demo: gr.Markdown("# Audio Transcription and Question Answering") audio_input = gr.Audio(label="Audio Input", sources=["microphone"], type="numpy") transcription_output = gr.Textbox(label="Transcription") answer_output = gr.Textbox(label="Answer Result") clear_button = gr.Button("Clear") audio_input.stop_recording( fn=process_audio, inputs=[audio_input], outputs=[transcription_output, answer_output] ) clear_button.click( fn=clear_all, inputs=[], outputs=[audio_input, transcription_output, answer_output] ) demo.launch()