from transformers import pipeline import gradio as gr translator = pipeline("translation", model = "penpen/novel-zh-en", max_time = 7) classifier = pipeline ("text-classification", model = 'bhadresh-savani/bert-base-uncased-emotion', top_k = 1) def on_click(chines_text): print('input: ', chines_text) text = translator(chines_text)[0]["translation_text"] print('translate: ', text) result = text, classifier(text) print('classify: ', result) print('----------------------------') return result with gr.Blocks() as block: gr.Markdown("

中文情感识别

") tb_input = gr.Textbox(label = "输入", placeholder = "输入中文句子", lines = 1) btn = gr.Button("翻译并识别", variant = 'primary') tb_tans = gr.Textbox(label = "翻译结果") tb_class = gr.Textbox(label = "识别结果") btn.click(fn = on_click, inputs = tb_input, outputs = [tb_tans, tb_class]) block.queue(concurrency_count = 30) block.launch(share=True)