File size: 5,144 Bytes
d31004d
04b1b0f
 
 
e75a87d
04b1b0f
5f39588
06f55a7
04b1b0f
e75a87d
 
 
c08c2aa
04b1b0f
e75a87d
 
47ed9da
e75a87d
 
 
 
 
 
 
 
9b0d029
 
04b1b0f
5f39588
5adc6e3
5f39588
 
 
 
 
04b1b0f
4c27642
04b1b0f
602d38a
f2cee5f
8641642
 
5839c65
 
8641642
5839c65
8641642
 
5f39588
8641642
02422f5
8641642
 
 
 
 
 
 
5f39588
8641642
42fb594
f2cee5f
04b1b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573a973
04b1b0f
 
 
 
 
 
 
 
 
 
 
 
3190ad3
1b5afff
9aaa37e
04b1b0f
 
 
 
9aaa37e
04b1b0f
 
35dbb36
04b1b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82d567d
04b1b0f
82d567d
 
04b1b0f
 
 
 
82d567d
04b1b0f
82d567d
 
04b1b0f
 
 
 
 
 
82d567d
04b1b0f
 
82d567d
04b1b0f
 
 
 
 
82d567d
04b1b0f
573a973
04b1b0f
 
 
 
c08c2aa
db13200
04b1b0f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import spaces
import gradio as gr
import numpy as np
import random
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import os

from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

device = "cuda" 

token=os.environ["TOKEN"]

model_id="aipicasso/emix-1-0"
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id,subfolder="scheduler",token=token)
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token)

negative_ti_file = hf_hub_download(repo_id="Aikimi/unaestheticXL_Negative_TI", filename="unaestheticXLv31.safetensors")
state_dict = load_file(negative_ti_file)
pipe.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
pipe.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)

pipe = pipe.to(device)



MODEL_NAME = "p1atdev/dart-v2-moe-sft"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) # trust_remote_code is required for tokenizer
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16)
model=model.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1344

@spaces.GPU
def infer(seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    prompt = (
        f"<|bos|>"
        f"<copyright></copyright>"
        f"<character></character>"
        f"<|rating:general|><|aspect_ratio:tall|><|length:long|>"
        f"<general>1girl<|identity:none|><|input_end|>"
    )
    inputs = tokenizer(prompt, return_tensors="pt").input_ids
    with torch.no_grad():
      outputs = model.generate(
        inputs.to(device),
        do_sample=True,
        temperature=1.0,
        top_p=1.0,
        top_k=100,
        max_new_tokens=64,
        num_beams=1,
      )
    
    prompt=", ".join([tag for tag in tokenizer.batch_decode(outputs[0], skip_special_tokens=True) if tag.strip() != ""])
    negative_prompt="unaestheticXLv31, 3d, photo, realism"
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image, prompt

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # 著作権のないイラスト
        ## Anime image without copyright
        Generateボタンを押し、画像を生成してください。この画像がいくらきれいであろうと著作権は誰にもありません。この画像は時刻を入力とした自然現象によって作られたものです。美しいとは何でしょうか。
        """)
        
        with gr.Row():
            
            run_button = gr.Button("Generate", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        generated_prompt = gr.Textbox(label="Generated prompt", show_label=False, interactive=False)
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=1.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=30,
                    step=1,
                    value=20,
                )

    run_button.click(
        fn = infer,
        inputs = [seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result,generated_prompt]
    )

demo.queue().launch()