Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
-
import
|
4 |
|
5 |
# Load a small CPU model for text to vector processing
|
6 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
@@ -8,25 +8,50 @@ model = AutoModel.from_pretrained(model_name)
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
|
10 |
def text_to_vector(texts):
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
return
|
23 |
|
24 |
demo = gr.Interface(
|
25 |
fn=text_to_vector,
|
26 |
inputs=gr.Textbox(label="Enter JSON array", placeholder="Enter an array of sentences as a JSON string"),
|
27 |
outputs=gr.JSON(label="Sentence and Vector Pairs"),
|
28 |
-
title="Batch Text to Vector
|
29 |
description="This demo converts an array of sentences to vectors and returns objects with sentence and vector."
|
30 |
)
|
31 |
|
32 |
demo.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
# Load a small CPU model for text to vector processing
|
6 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
|
10 |
def text_to_vector(texts):
|
11 |
+
results = []
|
12 |
+
|
13 |
+
# Process each sentence individually to catch errors
|
14 |
+
for sentence in texts:
|
15 |
+
try:
|
16 |
+
# Tokenize the sentence
|
17 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True)
|
18 |
+
|
19 |
+
# Check if tokenization results in valid tokens
|
20 |
+
if inputs['input_ids'].shape[1] == 0:
|
21 |
+
raise ValueError(f"Tokenization failed for sentence: '{sentence}'")
|
22 |
+
|
23 |
+
# Pass through the model
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(**inputs)
|
26 |
+
|
27 |
+
# Get the vector from pooler_output or handle errors
|
28 |
+
if outputs.pooler_output is None:
|
29 |
+
raise ValueError(f"No vector generated for sentence: '{sentence}'")
|
30 |
+
|
31 |
+
# Convert the vector to a list of floats
|
32 |
+
vector = outputs.pooler_output.squeeze().numpy().tolist()
|
33 |
+
|
34 |
+
# Append result as sentence and vector pair
|
35 |
+
results.append({
|
36 |
+
"sentence": sentence,
|
37 |
+
"vector": vector
|
38 |
+
})
|
39 |
+
except Exception as e:
|
40 |
+
# Handle any errors for individual sentences
|
41 |
+
results.append({
|
42 |
+
"sentence": sentence,
|
43 |
+
"vector": f"Error: {str(e)}"
|
44 |
+
})
|
45 |
|
46 |
+
return results
|
47 |
|
48 |
demo = gr.Interface(
|
49 |
fn=text_to_vector,
|
50 |
inputs=gr.Textbox(label="Enter JSON array", placeholder="Enter an array of sentences as a JSON string"),
|
51 |
outputs=gr.JSON(label="Sentence and Vector Pairs"),
|
52 |
+
title="Batch Text to Vector",
|
53 |
description="This demo converts an array of sentences to vectors and returns objects with sentence and vector."
|
54 |
)
|
55 |
|
56 |
demo.launch()
|
57 |
+
|