#!/usr/bin/env python from __future__ import annotations import os import pathlib import random import shlex import subprocess import gradio as gr import torch from huggingface_hub import snapshot_download if os.getenv('SYSTEM') == 'spaces': subprocess.run(shlex.split('pip uninstall -y modelscope')) subprocess.run( shlex.split( 'pip install git+https://github.com/modelscope/modelscope@fe67395') ) from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline model_dir = pathlib.Path('weights') if not model_dir.exists(): model_dir.mkdir() snapshot_download('damo-vilab/modelscope-damo-text-to-video-synthesis', repo_type='model', local_dir=model_dir) DESCRIPTION = '# [ModelScope Text to Video Synthesis](https://modelscope.cn/models/damo/text-to-video-synthesis/summary)' if (SPACE_ID := os.getenv('SPACE_ID')) is not None: DESCRIPTION += f'\n

For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. Duplicate Space

' pipe = pipeline('text-to-video-synthesis', model_dir.as_posix()) def generate(prompt: str, seed: int) -> str: if seed == -1: seed = random.randint(0, 1000000) torch.manual_seed(seed) return pipe({'text': prompt})[OutputKeys.OUTPUT_VIDEO] examples = [ ['An astronaut riding a horse.', 0], ['A panda eating bamboo on a rock.', 0], ['Spiderman is surfing.', 0], ] with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): prompt = gr.Text(label='Prompt', max_lines=1) seed = gr.Slider( label='Seed', minimum=-1, maximum=1000000, step=1, value=-1, info='If set to -1, a different seed will be used each time.') run_button = gr.Button('Run') with gr.Column(): result = gr.Video(label='Result') inputs = [prompt, seed] gr.Examples(examples=examples, inputs=inputs, outputs=result, fn=generate, cache_examples=os.getenv('SYSTEM') == 'spaces') prompt.submit(fn=generate, inputs=inputs, outputs=result) run_button.click(fn=generate, inputs=inputs, outputs=result) with gr.Accordion(label='Biases and content acknowledgment', open=False): gr.HTML("""

Biases and content acknowledgment

Despite how impressive being able to turn text into video is, beware to the fact that this model may output content that reinforces or exacerbates societal biases. The training data includes LAION5B, ImageNet, Webvid and other public datasets. The model was not trained to realistically represent people or events, so using it to generate such content is beyond the model's capabilities.

It is not intended to generate content that is demeaning or harmful to people or their environment, culture, religion, etc. Similarly, it is not allowed to generate pornographic, violent and bloody content generation. The model is meant for research purposes.

To learn more about the model, head to its model card.

""") demo.queue(api_open=False, max_size=15).launch()