Spaces:
Running
Running
File size: 42,566 Bytes
19fe404 f62c8b9 e262715 19fe404 f62c8b9 19fe404 f62c8b9 c2a6cd2 19fe404 f62c8b9 19fe404 c2a6cd2 19fe404 c2a6cd2 f62c8b9 19fe404 f62c8b9 e262715 f62c8b9 19fe404 f62c8b9 19fe404 c2a6cd2 19fe404 f62c8b9 19fe404 f62c8b9 19fe404 f62c8b9 19fe404 c2a6cd2 19fe404 f62c8b9 19fe404 f62c8b9 19fe404 f62c8b9 19fe404 f62c8b9 19fe404 f62c8b9 19fe404 e262715 f62c8b9 19fe404 c2a6cd2 19fe404 f62c8b9 19fe404 f62c8b9 19fe404 c2a6cd2 19fe404 f62c8b9 19fe404 f62c8b9 19fe404 c2a6cd2 19fe404 f62c8b9 19fe404 f62c8b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.autoencoders.vae import (DecoderOutput,
DiagonalGaussianDistribution)
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import logging
from diffusers.utils.accelerate_utils import apply_forward_hook
try:
from diffusers.loaders import FromOriginalVAEMixin
except:
from diffusers.loaders import FromOriginalModelMixin as FromOriginalVAEMixin
from diffusers.models.attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, Attention,
AttentionProcessor, AttnAddedKVProcessor, AttnProcessor)
from diffusers.models.autoencoders.vae import (DecoderOutput,
DiagonalGaussianDistribution)
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils.accelerate_utils import apply_forward_hook
from torch import nn
from diffusers import AutoencoderKL
from ..vae.ldm.models.cogvideox_enc_dec import (CogVideoXCausalConv3d,
CogVideoXDecoder3D,
CogVideoXEncoder3D,
CogVideoXSafeConv3d)
from ..vae.ldm.models.omnigen_enc_dec import CausalConv3d
from ..vae.ldm.models.omnigen_enc_dec import Decoder as omnigen_Mag_Decoder
from ..vae.ldm.models.omnigen_enc_dec import Encoder as omnigen_Mag_Encoder
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def str_eval(item):
if type(item) == str:
return eval(item)
else:
return item
class AutoencoderKLMagvit(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
ch = 128,
ch_mult = [ 1,2,4,4 ],
block_out_channels = [128, 256, 512, 512],
use_gc_blocks = None,
down_block_types: tuple = None,
up_block_types: tuple = None,
mid_block_type: str = "MidBlock3D",
mid_block_use_attention: bool = True,
mid_block_attention_type: str = "3d",
mid_block_num_attention_heads: int = 1,
layers_per_block: int = 2,
act_fn: str = "silu",
num_attention_heads: int = 1,
latent_channels: int = 4,
norm_num_groups: int = 32,
scaling_factor: float = 0.1825,
force_upcast: float = True,
slice_mag_vae=True,
slice_compression_vae=False,
cache_compression_vae=False,
cache_mag_vae=False,
use_tiling=False,
use_tiling_encoder=False,
use_tiling_decoder=False,
mini_batch_encoder=9,
mini_batch_decoder=3,
upcast_vae=False,
spatial_group_norm=False,
tile_sample_min_size=384,
tile_overlap_factor=0.25,
):
super().__init__()
down_block_types = str_eval(down_block_types)
up_block_types = str_eval(up_block_types)
self.encoder = omnigen_Mag_Encoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
ch=ch,
ch_mult=ch_mult,
block_out_channels=block_out_channels,
use_gc_blocks=use_gc_blocks,
mid_block_type=mid_block_type,
mid_block_use_attention=mid_block_use_attention,
mid_block_attention_type=mid_block_attention_type,
mid_block_num_attention_heads=mid_block_num_attention_heads,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
num_attention_heads=num_attention_heads,
double_z=True,
slice_mag_vae=slice_mag_vae,
slice_compression_vae=slice_compression_vae,
cache_compression_vae=cache_compression_vae,
cache_mag_vae=cache_mag_vae,
mini_batch_encoder=mini_batch_encoder,
spatial_group_norm=spatial_group_norm,
)
self.decoder = omnigen_Mag_Decoder(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
ch=ch,
ch_mult=ch_mult,
block_out_channels=block_out_channels,
use_gc_blocks=use_gc_blocks,
mid_block_type=mid_block_type,
mid_block_use_attention=mid_block_use_attention,
mid_block_attention_type=mid_block_attention_type,
mid_block_num_attention_heads=mid_block_num_attention_heads,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
num_attention_heads=num_attention_heads,
slice_mag_vae=slice_mag_vae,
slice_compression_vae=slice_compression_vae,
cache_compression_vae=cache_compression_vae,
cache_mag_vae=cache_mag_vae,
mini_batch_decoder=mini_batch_decoder,
spatial_group_norm=spatial_group_norm,
)
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
self.slice_mag_vae = slice_mag_vae
self.slice_compression_vae = slice_compression_vae
self.cache_compression_vae = cache_compression_vae
self.cache_mag_vae = cache_mag_vae
self.mini_batch_encoder = mini_batch_encoder
self.mini_batch_decoder = mini_batch_decoder
self.use_slicing = False
self.use_tiling = use_tiling
self.use_tiling_encoder = use_tiling_encoder
self.use_tiling_decoder = use_tiling_decoder
self.upcast_vae = upcast_vae
self.tile_sample_min_size = tile_sample_min_size
self.tile_overlap_factor = tile_overlap_factor
self.tile_latent_min_size = int(self.tile_sample_min_size / (2 ** (len(ch_mult) - 1)))
self.scaling_factor = scaling_factor
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (omnigen_Mag_Encoder, omnigen_Mag_Decoder)):
module.gradient_checkpointing = value
def _clear_conv_cache(self):
for name, module in self.named_modules():
if isinstance(module, CausalConv3d):
module._clear_conv_cache()
@apply_forward_hook
def encode(
self, x: torch.FloatTensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.FloatTensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded images. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.upcast_vae:
x = x.float()
self.encoder = self.encoder.float()
self.quant_conv = self.quant_conv.float()
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
x = self.tiled_encode(x, return_dict=return_dict)
return x
if self.use_tiling_encoder and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
x = self.tiled_encode(x, return_dict=return_dict)
return x
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
self._clear_conv_cache()
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
if self.upcast_vae:
z = z.float()
self.decoder = self.decoder.float()
self.post_quant_conv = self.post_quant_conv.float()
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(z, return_dict=return_dict)
if self.use_tiling_decoder and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(z, return_dict=return_dict)
z = self.post_quant_conv(z)
dec = self.decoder(z)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
@apply_forward_hook
def decode(
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
) -> Union[DecoderOutput, torch.FloatTensor]:
"""
Decode a batch of images.
Args:
z (`torch.FloatTensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
self._clear_conv_cache()
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def blend_v(
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (
1 - y / blend_extent
) + b[:, :, :, y, :] * (y / blend_extent)
return b
def blend_h(
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (
1 - x / blend_extent
) + b[:, :, :, :, x] * (x / blend_extent)
return b
def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
row_limit = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
rows = []
for i in range(0, x.shape[3], overlap_size):
row = []
for j in range(0, x.shape[4], overlap_size):
tile = x[
:,
:,
:,
i : i + self.tile_sample_min_size,
j : j + self.tile_sample_min_size,
]
tile = self.encoder(tile)
tile = self.quant_conv(tile)
row.append(tile)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=4))
moments = torch.cat(result_rows, dim=3)
posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
row_limit = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, z.shape[3], overlap_size):
row = []
for j in range(0, z.shape[4], overlap_size):
tile = z[
:,
:,
:,
i : i + self.tile_latent_min_size,
j : j + self.tile_latent_min_size,
]
tile = self.post_quant_conv(tile)
decoded = self.decoder(tile)
row.append(decoded)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=4))
dec = torch.cat(result_rows, dim=3)
# Handle the lower right corner tile separately
lower_right_original = z[
:,
:,
:,
-self.tile_latent_min_size:,
-self.tile_latent_min_size:
]
quantized_lower_right = self.decoder(self.post_quant_conv(lower_right_original))
# Combine
H, W = quantized_lower_right.size(-2), quantized_lower_right.size(-1)
x_weights = torch.linspace(0, 1, W).unsqueeze(0).repeat(H, 1)
y_weights = torch.linspace(0, 1, H).unsqueeze(1).repeat(1, W)
weights = torch.min(x_weights, y_weights)
if len(dec.size()) == 4:
weights = weights.unsqueeze(0).unsqueeze(0)
elif len(dec.size()) == 5:
weights = weights.unsqueeze(0).unsqueeze(0).unsqueeze(0)
weights = weights.to(dec.device)
quantized_area = dec[:, :, :, -H:, -W:]
combined = weights * quantized_lower_right + (1 - weights) * quantized_area
dec[:, :, :, -H:, -W:] = combined
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.FloatTensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[DecoderOutput, torch.FloatTensor]:
r"""
Args:
sample (`torch.FloatTensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
@classmethod
def from_pretrained(cls, pretrained_model_path, subfolder=None, **vae_additional_kwargs):
import json
import os
if subfolder is not None:
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
config_file = os.path.join(pretrained_model_path, 'config.json')
if not os.path.isfile(config_file):
raise RuntimeError(f"{config_file} does not exist")
with open(config_file, "r") as f:
config = json.load(f)
model = cls.from_config(config, **vae_additional_kwargs)
from diffusers.utils import WEIGHTS_NAME
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
model_file_safetensors = model_file.replace(".bin", ".safetensors")
if os.path.exists(model_file_safetensors):
from safetensors.torch import load_file, safe_open
state_dict = load_file(model_file_safetensors)
else:
if not os.path.isfile(model_file):
raise RuntimeError(f"{model_file} does not exist")
state_dict = torch.load(model_file, map_location="cpu")
m, u = model.load_state_dict(state_dict, strict=False)
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
print(m, u)
return model
# Modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
[CogVideoX](https://github.com/THUDM/CogVideo).
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
scaling_factor (`float`, *optional*, defaults to `1.15258426`):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["CogVideoXResnetBlock3D"]
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str] = (
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
),
up_block_types: Tuple[str] = (
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
),
block_out_channels: Tuple[int] = (128, 256, 256, 512),
latent_channels: int = 16,
layers_per_block: int = 3,
act_fn: str = "silu",
norm_eps: float = 1e-6,
norm_num_groups: int = 32,
temporal_compression_ratio: float = 4,
sample_height: int = 480,
sample_width: int = 720,
scaling_factor: float = 1.15258426,
shift_factor: Optional[float] = None,
latents_mean: Optional[Tuple[float]] = None,
latents_std: Optional[Tuple[float]] = None,
force_upcast: float = True,
use_quant_conv: bool = False,
use_post_quant_conv: bool = False,
slice_mag_vae=False,
slice_compression_vae=False,
cache_compression_vae=False,
cache_mag_vae=True,
use_tiling=False,
mini_batch_encoder=4,
mini_batch_decoder=1,
):
super().__init__()
self.encoder = CogVideoXEncoder3D(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_eps=norm_eps,
norm_num_groups=norm_num_groups,
temporal_compression_ratio=temporal_compression_ratio,
)
self.decoder = CogVideoXDecoder3D(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_eps=norm_eps,
norm_num_groups=norm_num_groups,
temporal_compression_ratio=temporal_compression_ratio,
)
self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None
self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None
self.use_slicing = False
self.use_tiling = use_tiling
# Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not
# recommended because the temporal parts of the VAE, here, are tricky to understand.
# If you decode X latent frames together, the number of output frames is:
# (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames
#
# Example with num_latent_frames_batch_size = 2:
# - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together
# => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
# => 6 * 8 = 48 frames
# - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together
# => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) +
# ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
# => 1 * 9 + 5 * 8 = 49 frames
# It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that
# setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different
# number of temporal frames.
self.num_latent_frames_batch_size = 2
# We make the minimum height and width of sample for tiling half that of the generally supported
self.tile_sample_min_height = sample_height // 2
self.tile_sample_min_width = sample_width // 2
self.tile_latent_min_height = int(
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
)
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
# These are experimental overlap factors that were chosen based on experimentation and seem to work best for
# 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX
# and so the tiling implementation has only been tested on those specific resolutions.
self.tile_overlap_factor_height = 1 / 6
self.tile_overlap_factor_width = 1 / 5
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)):
module.gradient_checkpointing = value
def _clear_fake_context_parallel_cache(self):
for name, module in self.named_modules():
if isinstance(module, CogVideoXCausalConv3d):
logger.debug(f"Clearing fake Context Parallel cache for layer: {name}")
module._clear_fake_context_parallel_cache()
def enable_tiling(
self,
tile_sample_min_height: Optional[int] = None,
tile_sample_min_width: Optional[int] = None,
tile_overlap_factor_height: Optional[float] = None,
tile_overlap_factor_width: Optional[float] = None,
) -> None:
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
Args:
tile_sample_min_height (`int`, *optional*):
The minimum height required for a sample to be separated into tiles across the height dimension.
tile_sample_min_width (`int`, *optional*):
The minimum width required for a sample to be separated into tiles across the width dimension.
tile_overlap_factor_height (`int`, *optional*):
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher
value might cause more tiles to be processed leading to slow down of the decoding process.
tile_overlap_factor_width (`int`, *optional*):
The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there
are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher
value might cause more tiles to be processed leading to slow down of the decoding process.
"""
self.use_tiling = True
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
self.tile_latent_min_height = int(
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
)
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height
self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded images. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
batch_size, num_channels, num_frames, height, width = x.shape
if num_frames == 1:
h = self.encoder(x)
if self.quant_conv is not None:
h = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(h)
else:
frame_batch_size = 4
h = []
for i in range(num_frames // frame_batch_size):
remaining_frames = num_frames % frame_batch_size
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
end_frame = frame_batch_size * (i + 1) + remaining_frames
z_intermediate = x[:, :, start_frame:end_frame]
z_intermediate = self.encoder(z_intermediate)
if self.quant_conv is not None:
z_intermediate = self.quant_conv(z_intermediate)
h.append(z_intermediate)
self._clear_fake_context_parallel_cache()
h = torch.cat(h, dim=2)
posterior = DiagonalGaussianDistribution(h)
self._clear_fake_context_parallel_cache()
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
batch_size, num_channels, num_frames, height, width = z.shape
if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
return self.tiled_decode(z, return_dict=return_dict)
if num_frames == 1:
dec = []
z_intermediate = z
if self.post_quant_conv is not None:
z_intermediate = self.post_quant_conv(z_intermediate)
z_intermediate = self.decoder(z_intermediate)
dec.append(z_intermediate)
else:
frame_batch_size = self.num_latent_frames_batch_size
dec = []
for i in range(num_frames // frame_batch_size):
remaining_frames = num_frames % frame_batch_size
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
end_frame = frame_batch_size * (i + 1) + remaining_frames
z_intermediate = z[:, :, start_frame:end_frame]
if self.post_quant_conv is not None:
z_intermediate = self.post_quant_conv(z_intermediate)
z_intermediate = self.decoder(z_intermediate)
dec.append(z_intermediate)
self._clear_fake_context_parallel_cache()
dec = torch.cat(dec, dim=2)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
@apply_forward_hook
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
r"""
Decode a batch of images using a tiled decoder.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
# Rough memory assessment:
# - In CogVideoX-2B, there are a total of 24 CausalConv3d layers.
# - The biggest intermediate dimensions are: [1, 128, 9, 480, 720].
# - Assume fp16 (2 bytes per value).
# Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB
#
# Memory assessment when using tiling:
# - Assume everything as above but now HxW is 240x360 by tiling in half
# Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB
batch_size, num_channels, num_frames, height, width = z.shape
overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height))
overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width))
blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height)
blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width)
row_limit_height = self.tile_sample_min_height - blend_extent_height
row_limit_width = self.tile_sample_min_width - blend_extent_width
frame_batch_size = self.num_latent_frames_batch_size
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, overlap_height):
row = []
for j in range(0, width, overlap_width):
time = []
for k in range(num_frames // frame_batch_size):
remaining_frames = num_frames % frame_batch_size
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
end_frame = frame_batch_size * (k + 1) + remaining_frames
tile = z[
:,
:,
start_frame:end_frame,
i : i + self.tile_latent_min_height,
j : j + self.tile_latent_min_width,
]
if self.post_quant_conv is not None:
tile = self.post_quant_conv(tile)
tile = self.decoder(tile)
time.append(tile)
self._clear_fake_context_parallel_cache()
row.append(torch.cat(time, dim=2))
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent_width)
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
result_rows.append(torch.cat(result_row, dim=4))
dec = torch.cat(result_rows, dim=3)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[torch.Tensor, torch.Tensor]:
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z)
if not return_dict:
return (dec,)
return dec
|