EasyAnimate / easyanimate /data /dataset_image_video.py
bubbliiiing
Update V5.1
c2a6cd2
import csv
import gc
import io
import json
import math
import os
import random
from contextlib import contextmanager
from threading import Thread
import albumentations
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from decord import VideoReader
from einops import rearrange
from func_timeout import FunctionTimedOut, func_timeout
from packaging import version as pver
from PIL import Image
from torch.utils.data import BatchSampler, Sampler
from torch.utils.data.dataset import Dataset
VIDEO_READER_TIMEOUT = 20
def get_random_mask(shape):
f, c, h, w = shape
if f != 1:
mask_index = np.random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], p=[0.05, 0.2, 0.2, 0.2, 0.05, 0.05, 0.05, 0.1, 0.05, 0.05])
else:
mask_index = np.random.choice([0, 1], p = [0.2, 0.8])
mask = torch.zeros((f, 1, h, w), dtype=torch.uint8)
if mask_index == 0:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围
start_x = max(center_x - block_size_x // 2, 0)
end_x = min(center_x + block_size_x // 2, w)
start_y = max(center_y - block_size_y // 2, 0)
end_y = min(center_y + block_size_y // 2, h)
mask[:, :, start_y:end_y, start_x:end_x] = 1
elif mask_index == 1:
mask[:, :, :, :] = 1
elif mask_index == 2:
mask_frame_index = np.random.randint(1, 5)
mask[mask_frame_index:, :, :, :] = 1
elif mask_index == 3:
mask_frame_index = np.random.randint(1, 5)
mask[mask_frame_index:-mask_frame_index, :, :, :] = 1
elif mask_index == 4:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围
start_x = max(center_x - block_size_x // 2, 0)
end_x = min(center_x + block_size_x // 2, w)
start_y = max(center_y - block_size_y // 2, 0)
end_y = min(center_y + block_size_y // 2, h)
mask_frame_before = np.random.randint(0, f // 2)
mask_frame_after = np.random.randint(f // 2, f)
mask[mask_frame_before:mask_frame_after, :, start_y:end_y, start_x:end_x] = 1
elif mask_index == 5:
mask = torch.randint(0, 2, (f, 1, h, w), dtype=torch.uint8)
elif mask_index == 6:
num_frames_to_mask = random.randint(1, max(f // 2, 1))
frames_to_mask = random.sample(range(f), num_frames_to_mask)
for i in frames_to_mask:
block_height = random.randint(1, h // 4)
block_width = random.randint(1, w // 4)
top_left_y = random.randint(0, h - block_height)
top_left_x = random.randint(0, w - block_width)
mask[i, 0, top_left_y:top_left_y + block_height, top_left_x:top_left_x + block_width] = 1
elif mask_index == 7:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
a = torch.randint(min(w, h) // 8, min(w, h) // 4, (1,)).item() # 长半轴
b = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item() # 短半轴
for i in range(h):
for j in range(w):
if ((i - center_y) ** 2) / (b ** 2) + ((j - center_x) ** 2) / (a ** 2) < 1:
mask[:, :, i, j] = 1
elif mask_index == 8:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
radius = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item()
for i in range(h):
for j in range(w):
if (i - center_y) ** 2 + (j - center_x) ** 2 < radius ** 2:
mask[:, :, i, j] = 1
elif mask_index == 9:
for idx in range(f):
if np.random.rand() > 0.5:
mask[idx, :, :, :] = 1
else:
raise ValueError(f"The mask_index {mask_index} is not define")
return mask
class Camera(object):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
def __init__(self, entry):
fx, fy, cx, cy = entry[1:5]
self.fx = fx
self.fy = fy
self.cx = cx
self.cy = cy
w2c_mat = np.array(entry[7:]).reshape(3, 4)
w2c_mat_4x4 = np.eye(4)
w2c_mat_4x4[:3, :] = w2c_mat
self.w2c_mat = w2c_mat_4x4
self.c2w_mat = np.linalg.inv(w2c_mat_4x4)
def custom_meshgrid(*args):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def get_relative_pose(cam_params):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
cam_to_origin = 0
target_cam_c2w = np.array([
[1, 0, 0, 0],
[0, 1, 0, -cam_to_origin],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
abs2rel = target_cam_c2w @ abs_w2cs[0]
ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
ret_poses = np.array(ret_poses, dtype=np.float32)
return ret_poses
def ray_condition(K, c2w, H, W, device):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
# c2w: B, V, 4, 4
# K: B, V, 4
B = K.shape[0]
j, i = custom_meshgrid(
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
)
i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1
zs = torch.ones_like(i) # [B, HxW]
xs = (i - cx) / fx * zs
ys = (j - cy) / fy * zs
zs = zs.expand_as(ys)
directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3
directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW
rays_o = c2w[..., :3, 3] # B, V, 3
rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW
# c2w @ dirctions
rays_dxo = torch.cross(rays_o, rays_d)
plucker = torch.cat([rays_dxo, rays_d], dim=-1)
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6
# plucker = plucker.permute(0, 1, 4, 2, 3)
return plucker
def process_pose_file(pose_file_path, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu', return_poses=False):
"""Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
with open(pose_file_path, 'r') as f:
poses = f.readlines()
poses = [pose.strip().split(' ') for pose in poses[1:]]
cam_params = [[float(x) for x in pose] for pose in poses]
if return_poses:
return cam_params
else:
cam_params = [Camera(cam_param) for cam_param in cam_params]
sample_wh_ratio = width / height
pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed
if pose_wh_ratio > sample_wh_ratio:
resized_ori_w = height * pose_wh_ratio
for cam_param in cam_params:
cam_param.fx = resized_ori_w * cam_param.fx / width
else:
resized_ori_h = width / pose_wh_ratio
for cam_param in cam_params:
cam_param.fy = resized_ori_h * cam_param.fy / height
intrinsic = np.asarray([[cam_param.fx * width,
cam_param.fy * height,
cam_param.cx * width,
cam_param.cy * height]
for cam_param in cam_params], dtype=np.float32)
K = torch.as_tensor(intrinsic)[None] # [1, 1, 4]
c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere
c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4]
plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W
plucker_embedding = plucker_embedding[None]
plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
return plucker_embedding
def process_pose_params(cam_params, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu'):
"""Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
cam_params = [Camera(cam_param) for cam_param in cam_params]
sample_wh_ratio = width / height
pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed
if pose_wh_ratio > sample_wh_ratio:
resized_ori_w = height * pose_wh_ratio
for cam_param in cam_params:
cam_param.fx = resized_ori_w * cam_param.fx / width
else:
resized_ori_h = width / pose_wh_ratio
for cam_param in cam_params:
cam_param.fy = resized_ori_h * cam_param.fy / height
intrinsic = np.asarray([[cam_param.fx * width,
cam_param.fy * height,
cam_param.cx * width,
cam_param.cy * height]
for cam_param in cam_params], dtype=np.float32)
K = torch.as_tensor(intrinsic)[None] # [1, 1, 4]
c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere
c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4]
plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W
plucker_embedding = plucker_embedding[None]
plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
return plucker_embedding
class ImageVideoSampler(BatchSampler):
"""A sampler wrapper for grouping images with similar aspect ratio into a same batch.
Args:
sampler (Sampler): Base sampler.
dataset (Dataset): Dataset providing data information.
batch_size (int): Size of mini-batch.
drop_last (bool): If ``True``, the sampler will drop the last batch if
its size would be less than ``batch_size``.
aspect_ratios (dict): The predefined aspect ratios.
"""
def __init__(self,
sampler: Sampler,
dataset: Dataset,
batch_size: int,
drop_last: bool = False
) -> None:
if not isinstance(sampler, Sampler):
raise TypeError('sampler should be an instance of ``Sampler``, '
f'but got {sampler}')
if not isinstance(batch_size, int) or batch_size <= 0:
raise ValueError('batch_size should be a positive integer value, '
f'but got batch_size={batch_size}')
self.sampler = sampler
self.dataset = dataset
self.batch_size = batch_size
self.drop_last = drop_last
# buckets for each aspect ratio
self.bucket = {'image':[], 'video':[]}
def __iter__(self):
for idx in self.sampler:
content_type = self.dataset.dataset[idx].get('type', 'image')
self.bucket[content_type].append(idx)
# yield a batch of indices in the same aspect ratio group
if len(self.bucket['video']) == self.batch_size:
bucket = self.bucket['video']
yield bucket[:]
del bucket[:]
elif len(self.bucket['image']) == self.batch_size:
bucket = self.bucket['image']
yield bucket[:]
del bucket[:]
@contextmanager
def VideoReader_contextmanager(*args, **kwargs):
vr = VideoReader(*args, **kwargs)
try:
yield vr
finally:
del vr
gc.collect()
def get_video_reader_batch(video_reader, batch_index):
frames = video_reader.get_batch(batch_index).asnumpy()
return frames
def resize_frame(frame, target_short_side):
h, w, _ = frame.shape
if h < w:
if target_short_side > h:
return frame
new_h = target_short_side
new_w = int(target_short_side * w / h)
else:
if target_short_side > w:
return frame
new_w = target_short_side
new_h = int(target_short_side * h / w)
resized_frame = cv2.resize(frame, (new_w, new_h))
return resized_frame
class ImageVideoDataset(Dataset):
def __init__(
self,
ann_path, data_root=None,
video_sample_size=512, video_sample_stride=4, video_sample_n_frames=16,
image_sample_size=512,
video_repeat=0,
text_drop_ratio=0.1,
enable_bucket=False,
video_length_drop_start=0.1,
video_length_drop_end=0.9,
enable_inpaint=False,
):
# Loading annotations from files
print(f"loading annotations from {ann_path} ...")
if ann_path.endswith('.csv'):
with open(ann_path, 'r') as csvfile:
dataset = list(csv.DictReader(csvfile))
elif ann_path.endswith('.json'):
dataset = json.load(open(ann_path))
self.data_root = data_root
# It's used to balance num of images and videos.
self.dataset = []
for data in dataset:
if data.get('type', 'image') != 'video':
self.dataset.append(data)
if video_repeat > 0:
for _ in range(video_repeat):
for data in dataset:
if data.get('type', 'image') == 'video':
self.dataset.append(data)
del dataset
self.length = len(self.dataset)
print(f"data scale: {self.length}")
# TODO: enable bucket training
self.enable_bucket = enable_bucket
self.text_drop_ratio = text_drop_ratio
self.enable_inpaint = enable_inpaint
self.video_length_drop_start = video_length_drop_start
self.video_length_drop_end = video_length_drop_end
# Video params
self.video_sample_stride = video_sample_stride
self.video_sample_n_frames = video_sample_n_frames
self.video_sample_size = tuple(video_sample_size) if not isinstance(video_sample_size, int) else (video_sample_size, video_sample_size)
self.video_transforms = transforms.Compose(
[
transforms.Resize(min(self.video_sample_size)),
transforms.CenterCrop(self.video_sample_size),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
# Image params
self.image_sample_size = tuple(image_sample_size) if not isinstance(image_sample_size, int) else (image_sample_size, image_sample_size)
self.image_transforms = transforms.Compose([
transforms.Resize(min(self.image_sample_size)),
transforms.CenterCrop(self.image_sample_size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5])
])
self.larger_side_of_image_and_video = max(min(self.image_sample_size), min(self.video_sample_size))
def get_batch(self, idx):
data_info = self.dataset[idx % len(self.dataset)]
if data_info.get('type', 'image')=='video':
video_id, text = data_info['file_path'], data_info['text']
if self.data_root is None:
video_dir = video_id
else:
video_dir = os.path.join(self.data_root, video_id)
with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader:
min_sample_n_frames = min(
self.video_sample_n_frames,
int(len(video_reader) * (self.video_length_drop_end - self.video_length_drop_start) // self.video_sample_stride)
)
if min_sample_n_frames == 0:
raise ValueError(f"No Frames in video.")
video_length = int(self.video_length_drop_end * len(video_reader))
clip_length = min(video_length, (min_sample_n_frames - 1) * self.video_sample_stride + 1)
start_idx = random.randint(int(self.video_length_drop_start * video_length), video_length - clip_length) if video_length != clip_length else 0
batch_index = np.linspace(start_idx, start_idx + clip_length - 1, min_sample_n_frames, dtype=int)
try:
sample_args = (video_reader, batch_index)
pixel_values = func_timeout(
VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args
)
resized_frames = []
for i in range(len(pixel_values)):
frame = pixel_values[i]
resized_frame = resize_frame(frame, self.larger_side_of_image_and_video)
resized_frames.append(resized_frame)
pixel_values = np.array(resized_frames)
except FunctionTimedOut:
raise ValueError(f"Read {idx} timeout.")
except Exception as e:
raise ValueError(f"Failed to extract frames from video. Error is {e}.")
if not self.enable_bucket:
pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous()
pixel_values = pixel_values / 255.
del video_reader
else:
pixel_values = pixel_values
if not self.enable_bucket:
pixel_values = self.video_transforms(pixel_values)
# Random use no text generation
if random.random() < self.text_drop_ratio:
text = ''
return pixel_values, text, 'video'
else:
image_path, text = data_info['file_path'], data_info['text']
if self.data_root is not None:
image_path = os.path.join(self.data_root, image_path)
image = Image.open(image_path).convert('RGB')
if not self.enable_bucket:
image = self.image_transforms(image).unsqueeze(0)
else:
image = np.expand_dims(np.array(image), 0)
if random.random() < self.text_drop_ratio:
text = ''
return image, text, 'image'
def __len__(self):
return self.length
def __getitem__(self, idx):
data_info = self.dataset[idx % len(self.dataset)]
data_type = data_info.get('type', 'image')
while True:
sample = {}
try:
data_info_local = self.dataset[idx % len(self.dataset)]
data_type_local = data_info_local.get('type', 'image')
if data_type_local != data_type:
raise ValueError("data_type_local != data_type")
pixel_values, name, data_type = self.get_batch(idx)
sample["pixel_values"] = pixel_values
sample["text"] = name
sample["data_type"] = data_type
sample["idx"] = idx
if len(sample) > 0:
break
except Exception as e:
print(e, self.dataset[idx % len(self.dataset)])
idx = random.randint(0, self.length-1)
if self.enable_inpaint and not self.enable_bucket:
mask = get_random_mask(pixel_values.size())
mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask
sample["mask_pixel_values"] = mask_pixel_values
sample["mask"] = mask
clip_pixel_values = sample["pixel_values"][0].permute(1, 2, 0).contiguous()
clip_pixel_values = (clip_pixel_values * 0.5 + 0.5) * 255
sample["clip_pixel_values"] = clip_pixel_values
ref_pixel_values = sample["pixel_values"][0].unsqueeze(0)
if (mask == 1).all():
ref_pixel_values = torch.ones_like(ref_pixel_values) * -1
sample["ref_pixel_values"] = ref_pixel_values
return sample
class ImageVideoControlDataset(Dataset):
def __init__(
self,
ann_path, data_root=None,
video_sample_size=512, video_sample_stride=4, video_sample_n_frames=16,
image_sample_size=512,
video_repeat=0,
text_drop_ratio=0.1,
enable_bucket=False,
video_length_drop_start=0.1,
video_length_drop_end=0.9,
enable_inpaint=False,
enable_camera_info=False,
):
# Loading annotations from files
print(f"loading annotations from {ann_path} ...")
if ann_path.endswith('.csv'):
with open(ann_path, 'r') as csvfile:
dataset = list(csv.DictReader(csvfile))
elif ann_path.endswith('.json'):
dataset = json.load(open(ann_path))
self.data_root = data_root
# It's used to balance num of images and videos.
self.dataset = []
for data in dataset:
if data.get('type', 'image') != 'video':
self.dataset.append(data)
if video_repeat > 0:
for _ in range(video_repeat):
for data in dataset:
if data.get('type', 'image') == 'video':
self.dataset.append(data)
del dataset
self.length = len(self.dataset)
print(f"data scale: {self.length}")
# TODO: enable bucket training
self.enable_bucket = enable_bucket
self.text_drop_ratio = text_drop_ratio
self.enable_inpaint = enable_inpaint
self.enable_camera_info = enable_camera_info
self.video_length_drop_start = video_length_drop_start
self.video_length_drop_end = video_length_drop_end
# Video params
self.video_sample_stride = video_sample_stride
self.video_sample_n_frames = video_sample_n_frames
self.video_sample_size = tuple(video_sample_size) if not isinstance(video_sample_size, int) else (video_sample_size, video_sample_size)
self.video_transforms = transforms.Compose(
[
transforms.Resize(min(self.video_sample_size)),
transforms.CenterCrop(self.video_sample_size),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
if self.enable_camera_info:
self.video_transforms_camera = transforms.Compose(
[
transforms.Resize(min(self.video_sample_size)),
transforms.CenterCrop(self.video_sample_size)
]
)
# Image params
self.image_sample_size = tuple(image_sample_size) if not isinstance(image_sample_size, int) else (image_sample_size, image_sample_size)
self.image_transforms = transforms.Compose([
transforms.Resize(min(self.image_sample_size)),
transforms.CenterCrop(self.image_sample_size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5])
])
self.larger_side_of_image_and_video = max(min(self.image_sample_size), min(self.video_sample_size))
def get_batch(self, idx):
data_info = self.dataset[idx % len(self.dataset)]
video_id, text = data_info['file_path'], data_info['text']
if data_info.get('type', 'image')=='video':
if self.data_root is None:
video_dir = video_id
else:
video_dir = os.path.join(self.data_root, video_id)
with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader:
min_sample_n_frames = min(
self.video_sample_n_frames,
int(len(video_reader) * (self.video_length_drop_end - self.video_length_drop_start) // self.video_sample_stride)
)
if min_sample_n_frames == 0:
raise ValueError(f"No Frames in video.")
video_length = int(self.video_length_drop_end * len(video_reader))
clip_length = min(video_length, (min_sample_n_frames - 1) * self.video_sample_stride + 1)
start_idx = random.randint(int(self.video_length_drop_start * video_length), video_length - clip_length) if video_length != clip_length else 0
batch_index = np.linspace(start_idx, start_idx + clip_length - 1, min_sample_n_frames, dtype=int)
try:
sample_args = (video_reader, batch_index)
pixel_values = func_timeout(
VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args
)
resized_frames = []
for i in range(len(pixel_values)):
frame = pixel_values[i]
resized_frame = resize_frame(frame, self.larger_side_of_image_and_video)
resized_frames.append(resized_frame)
pixel_values = np.array(resized_frames)
except FunctionTimedOut:
raise ValueError(f"Read {idx} timeout.")
except Exception as e:
raise ValueError(f"Failed to extract frames from video. Error is {e}.")
if not self.enable_bucket:
pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous()
pixel_values = pixel_values / 255.
del video_reader
else:
pixel_values = pixel_values
if not self.enable_bucket:
pixel_values = self.video_transforms(pixel_values)
# Random use no text generation
if random.random() < self.text_drop_ratio:
text = ''
control_video_id = data_info['control_file_path']
if self.data_root is None:
control_video_id = control_video_id
else:
control_video_id = os.path.join(self.data_root, control_video_id)
if self.enable_camera_info:
if control_video_id.lower().endswith('.txt'):
if not self.enable_bucket:
control_pixel_values = torch.zeros_like(pixel_values)
control_camera_values = process_pose_file(control_video_id, width=self.video_sample_size[1], height=self.video_sample_size[0])
control_camera_values = torch.from_numpy(control_camera_values).permute(0, 3, 1, 2).contiguous()
control_camera_values = F.interpolate(control_camera_values, size=(len(video_reader), control_camera_values.size(3)), mode='bilinear', align_corners=True)
control_camera_values = self.video_transforms_camera(control_camera_values)
else:
control_pixel_values = np.zeros_like(pixel_values)
control_camera_values = process_pose_file(control_video_id, width=self.video_sample_size[1], height=self.video_sample_size[0], return_poses=True)
control_camera_values = torch.from_numpy(np.array(control_camera_values)).unsqueeze(0).unsqueeze(0)
control_camera_values = F.interpolate(control_camera_values, size=(len(video_reader), control_camera_values.size(3)), mode='bilinear', align_corners=True)[0][0]
control_camera_values = np.array([control_camera_values[index] for index in batch_index])
else:
if not self.enable_bucket:
control_pixel_values = torch.zeros_like(pixel_values)
control_camera_values = None
else:
control_pixel_values = np.zeros_like(pixel_values)
control_camera_values = None
else:
with VideoReader_contextmanager(control_video_id, num_threads=2) as control_video_reader:
try:
sample_args = (control_video_reader, batch_index)
control_pixel_values = func_timeout(
VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args
)
resized_frames = []
for i in range(len(control_pixel_values)):
frame = control_pixel_values[i]
resized_frame = resize_frame(frame, self.larger_side_of_image_and_video)
resized_frames.append(resized_frame)
control_pixel_values = np.array(resized_frames)
except FunctionTimedOut:
raise ValueError(f"Read {idx} timeout.")
except Exception as e:
raise ValueError(f"Failed to extract frames from video. Error is {e}.")
if not self.enable_bucket:
control_pixel_values = torch.from_numpy(control_pixel_values).permute(0, 3, 1, 2).contiguous()
control_pixel_values = control_pixel_values / 255.
del control_video_reader
else:
control_pixel_values = control_pixel_values
if not self.enable_bucket:
control_pixel_values = self.video_transforms(control_pixel_values)
control_camera_values = None
return pixel_values, control_pixel_values, control_camera_values, text, "video"
else:
image_path, text = data_info['file_path'], data_info['text']
if self.data_root is not None:
image_path = os.path.join(self.data_root, image_path)
image = Image.open(image_path).convert('RGB')
if not self.enable_bucket:
image = self.image_transforms(image).unsqueeze(0)
else:
image = np.expand_dims(np.array(image), 0)
if random.random() < self.text_drop_ratio:
text = ''
control_image_id = data_info['control_file_path']
if self.data_root is None:
control_image_id = control_image_id
else:
control_image_id = os.path.join(self.data_root, control_image_id)
control_image = Image.open(control_image_id).convert('RGB')
if not self.enable_bucket:
control_image = self.image_transforms(control_image).unsqueeze(0)
else:
control_image = np.expand_dims(np.array(control_image), 0)
return image, control_image, None, text, 'image'
def __len__(self):
return self.length
def __getitem__(self, idx):
data_info = self.dataset[idx % len(self.dataset)]
data_type = data_info.get('type', 'image')
while True:
sample = {}
try:
data_info_local = self.dataset[idx % len(self.dataset)]
data_type_local = data_info_local.get('type', 'image')
if data_type_local != data_type:
raise ValueError("data_type_local != data_type")
pixel_values, control_pixel_values, control_camera_values, name, data_type = self.get_batch(idx)
sample["pixel_values"] = pixel_values
sample["control_pixel_values"] = control_pixel_values
sample["text"] = name
sample["data_type"] = data_type
sample["idx"] = idx
if self.enable_camera_info:
sample["control_camera_values"] = control_camera_values
if len(sample) > 0:
break
except Exception as e:
print(e, self.dataset[idx % len(self.dataset)])
idx = random.randint(0, self.length-1)
if self.enable_inpaint and not self.enable_bucket:
mask = get_random_mask(pixel_values.size())
mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask
sample["mask_pixel_values"] = mask_pixel_values
sample["mask"] = mask
clip_pixel_values = sample["pixel_values"][0].permute(1, 2, 0).contiguous()
clip_pixel_values = (clip_pixel_values * 0.5 + 0.5) * 255
sample["clip_pixel_values"] = clip_pixel_values
ref_pixel_values = sample["pixel_values"][0].unsqueeze(0)
if (mask == 1).all():
ref_pixel_values = torch.ones_like(ref_pixel_values) * -1
sample["ref_pixel_values"] = ref_pixel_values
return sample
if __name__ == "__main__":
dataset = ImageVideoDataset(
ann_path="test.json"
)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, num_workers=16)
for idx, batch in enumerate(dataloader):
print(batch["pixel_values"].shape, len(batch["text"]))