bubbliiiing
Update V5.1
c2a6cd2
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Tuple, Union
import diffusers
import pkg_resources
import torch
import torch.nn.functional as F
import torch.nn.init as init
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention import Attention, FeedForward
from diffusers.models.attention_processor import (Attention,
AttentionProcessor,
AttnProcessor2_0,
HunyuanAttnProcessor2_0)
from diffusers.models.embeddings import (SinusoidalPositionalEmbedding,
TimestepEmbedding, Timesteps,
get_3d_sincos_pos_embed)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import (AdaLayerNorm, AdaLayerNormZero,
CogVideoXLayerNormZero)
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import maybe_allow_in_graph
from einops import rearrange, repeat
from torch import nn
from .motion_module import PositionalEncoding, get_motion_module
from .norm import AdaLayerNormShift, EasyAnimateLayerNormZero, FP32LayerNorm
from .processor import (EasyAnimateAttnProcessor2_0,
EasyAnimateSWAttnProcessor2_0,
LazyKVCompressionProcessor2_0)
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
r"""
A gated self-attention dense layer that combines visual features and object features.
Parameters:
query_dim (`int`): The number of channels in the query.
context_dim (`int`): The number of channels in the context.
n_heads (`int`): The number of heads to use for attention.
d_head (`int`): The number of channels in each head.
"""
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
super().__init__()
# we need a linear projection since we need cat visual feature and obj feature
self.linear = nn.Linear(context_dim, query_dim)
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
self.ff = FeedForward(query_dim, activation_fn="geglu")
self.norm1 = FP32LayerNorm(query_dim)
self.norm2 = FP32LayerNorm(query_dim)
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
self.enabled = True
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
if not self.enabled:
return x
n_visual = x.shape[1]
objs = self.linear(objs)
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
return x
class LazyKVCompressionAttention(Attention):
def __init__(
self,
sr_ratio=2, *args, **kwargs
):
super().__init__(*args, **kwargs)
self.sr_ratio = sr_ratio
self.k_compression = nn.Conv2d(
kwargs["query_dim"],
kwargs["query_dim"],
groups=kwargs["query_dim"],
kernel_size=sr_ratio,
stride=sr_ratio,
bias=True
)
self.v_compression = nn.Conv2d(
kwargs["query_dim"],
kwargs["query_dim"],
groups=kwargs["query_dim"],
kernel_size=sr_ratio,
stride=sr_ratio,
bias=True
)
init.constant_(self.k_compression.weight, 1 / (sr_ratio * sr_ratio))
init.constant_(self.v_compression.weight, 1 / (sr_ratio * sr_ratio))
init.constant_(self.k_compression.bias, 0)
init.constant_(self.v_compression.bias, 0)
@maybe_allow_in_graph
class TemporalTransformerBlock(nn.Module):
r"""
A Temporal Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, *optional*, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*, defaults to `None`):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
norm_eps: float = 1e-5,
final_dropout: bool = False,
attention_type: str = "default",
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
# motion module kwargs
motion_module_type = "VanillaGrid",
motion_module_kwargs = None,
qk_norm = False,
after_norm = False,
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
self.use_layer_norm = norm_type == "layer_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
)
if positional_embeddings and (num_positional_embeddings is None):
raise ValueError(
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
)
if positional_embeddings == "sinusoidal":
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
else:
self.pos_embed = None
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif self.use_ada_layer_norm_zero:
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
else:
self.norm1 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
qk_norm="layer_norm" if qk_norm else None,
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(),
)
self.attn_temporal = get_motion_module(
in_channels = dim,
motion_module_type = motion_module_type,
motion_module_kwargs = motion_module_kwargs,
)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
qk_norm="layer_norm" if qk_norm else None,
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(),
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 3. Feed-forward
if not self.use_ada_layer_norm_single:
self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
if after_norm:
self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
else:
self.norm4 = None
# 4. Fuser
if attention_type == "gated" or attention_type == "gated-text-image":
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
# 5. Scale-shift for PixArt-Alpha.
if self.use_ada_layer_norm_single:
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
num_frames: int = 16,
height: int = 32,
width: int = 32,
) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
elif self.use_layer_norm:
norm_hidden_states = self.norm1(hidden_states)
elif self.use_ada_layer_norm_single:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
norm_hidden_states = norm_hidden_states.squeeze(1)
else:
raise ValueError("Incorrect norm used")
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
# 1. Retrieve lora scale.
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
# 2. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
norm_hidden_states = rearrange(norm_hidden_states, "b (f d) c -> (b f) d c", f=num_frames)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
attn_output = rearrange(attn_output, "(b f) d c -> b (f d) c", f=num_frames)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
elif self.use_ada_layer_norm_single:
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 2.5 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 2.75. Temp-Attention
if self.attn_temporal is not None:
attn_output = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=num_frames, h=height, w=width)
attn_output = self.attn_temporal(attn_output)
hidden_states = rearrange(attn_output, "b c f h w -> b (f h w) c")
# 3. Cross-Attention
if self.attn2 is not None:
if self.use_ada_layer_norm:
norm_hidden_states = self.norm2(hidden_states, timestep)
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
norm_hidden_states = self.norm2(hidden_states)
elif self.use_ada_layer_norm_single:
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
else:
raise ValueError("Incorrect norm")
if self.pos_embed is not None and self.use_ada_layer_norm_single is None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
if norm_hidden_states.dtype != encoder_hidden_states.dtype or norm_hidden_states.dtype != encoder_attention_mask.dtype:
norm_hidden_states = norm_hidden_states.to(encoder_hidden_states.dtype)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
if not self.use_ada_layer_norm_single:
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self.use_ada_layer_norm_single:
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
ff_output = torch.cat(
[
self.ff(hid_slice, scale=lora_scale)
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
],
dim=self._chunk_dim,
)
else:
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
if self.norm4 is not None:
ff_output = self.norm4(ff_output)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
elif self.use_ada_layer_norm_single:
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
@maybe_allow_in_graph
class SelfAttentionTemporalTransformerBlock(nn.Module):
r"""
A Temporal Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, *optional*, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*, defaults to `None`):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm",
norm_eps: float = 1e-5,
final_dropout: bool = False,
attention_type: str = "default",
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
qk_norm = False,
after_norm = False,
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
self.use_layer_norm = norm_type == "layer_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
)
if positional_embeddings and (num_positional_embeddings is None):
raise ValueError(
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
)
if positional_embeddings == "sinusoidal":
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
else:
self.pos_embed = None
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif self.use_ada_layer_norm_zero:
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
else:
self.norm1 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
qk_norm="layer_norm" if qk_norm else None,
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(),
)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
qk_norm="layer_norm" if qk_norm else None,
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(),
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 3. Feed-forward
if not self.use_ada_layer_norm_single:
self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
if after_norm:
self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
else:
self.norm4 = None
# 4. Fuser
if attention_type == "gated" or attention_type == "gated-text-image":
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
# 5. Scale-shift for PixArt-Alpha.
if self.use_ada_layer_norm_single:
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
elif self.use_layer_norm:
norm_hidden_states = self.norm1(hidden_states)
elif self.use_ada_layer_norm_single:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
norm_hidden_states = norm_hidden_states.squeeze(1)
else:
raise ValueError("Incorrect norm used")
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
# 1. Retrieve lora scale.
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
# 2. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
elif self.use_ada_layer_norm_single:
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 2.5 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 3. Cross-Attention
if self.attn2 is not None:
if self.use_ada_layer_norm:
norm_hidden_states = self.norm2(hidden_states, timestep)
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
norm_hidden_states = self.norm2(hidden_states)
elif self.use_ada_layer_norm_single:
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
else:
raise ValueError("Incorrect norm")
if self.pos_embed is not None and self.use_ada_layer_norm_single is None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
if not self.use_ada_layer_norm_single:
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self.use_ada_layer_norm_single:
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
ff_output = torch.cat(
[
self.ff(hid_slice, scale=lora_scale)
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
],
dim=self._chunk_dim,
)
else:
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
if self.norm4 is not None:
ff_output = self.norm4(ff_output)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
elif self.use_ada_layer_norm_single:
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out, norm_elementwise_affine):
super().__init__()
self.norm = FP32LayerNorm(dim_in, dim_in, norm_elementwise_affine)
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(self.norm(x)).chunk(2, dim=-1)
return x * F.gelu(gate)
@maybe_allow_in_graph
class HunyuanDiTBlock(nn.Module):
r"""
Transformer block used in Hunyuan-DiT model (https://github.com/Tencent/HunyuanDiT). Allow skip connection and
QKNorm
Parameters:
dim (`int`):
The number of channels in the input and output.
num_attention_heads (`int`):
The number of headsto use for multi-head attention.
cross_attention_dim (`int`,*optional*):
The size of the encoder_hidden_states vector for cross attention.
dropout(`float`, *optional*, defaults to 0.0):
The dropout probability to use.
activation_fn (`str`,*optional*, defaults to `"geglu"`):
Activation function to be used in feed-forward. .
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_eps (`float`, *optional*, defaults to 1e-6):
A small constant added to the denominator in normalization layers to prevent division by zero.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
ff_inner_dim (`int`, *optional*):
The size of the hidden layer in the feed-forward block. Defaults to `None`.
ff_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in the feed-forward block.
skip (`bool`, *optional*, defaults to `False`):
Whether to use skip connection. Defaults to `False` for down-blocks and mid-blocks.
qk_norm (`bool`, *optional*, defaults to `True`):
Whether to use normalization in QK calculation. Defaults to `True`.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
cross_attention_dim: int = 1024,
dropout=0.0,
activation_fn: str = "geglu",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-6,
final_dropout: bool = False,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
skip: bool = False,
qk_norm: bool = True,
time_position_encoding: bool = False,
after_norm: bool = False,
is_local_attention: bool = False,
local_attention_frames: int = 2,
enable_inpaint: bool = False,
kvcompression = False,
):
super().__init__()
# Define 3 blocks. Each block has its own normalization layer.
# NOTE: when new version comes, check norm2 and norm 3
# 1. Self-Attn
self.norm1 = AdaLayerNormShift(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.t_embed = PositionalEncoding(dim, dropout=0., max_len=512) \
if time_position_encoding else nn.Identity()
self.is_local_attention = is_local_attention
self.local_attention_frames = local_attention_frames
self.kvcompression = kvcompression
if kvcompression:
self.attn1 = LazyKVCompressionAttention(
query_dim=dim,
cross_attention_dim=None,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=True,
processor=LazyKVCompressionProcessor2_0(),
)
else:
self.attn1 = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=True,
processor=HunyuanAttnProcessor2_0(),
)
# 2. Cross-Attn
self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
if self.is_local_attention:
from mamba_ssm import Mamba2
self.mamba_norm_in = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.in_linear = nn.Linear(dim, 1536)
self.mamba_norm_1 = FP32LayerNorm(1536, norm_eps, norm_elementwise_affine)
self.mamba_norm_2 = FP32LayerNorm(1536, norm_eps, norm_elementwise_affine)
self.mamba_block_1 = Mamba2(
d_model=1536,
d_state=64,
d_conv=4,
expand=2,
)
self.mamba_block_2 = Mamba2(
d_model=1536,
d_state=64,
d_conv=4,
expand=2,
)
self.mamba_norm_after_mamba_block = FP32LayerNorm(1536, norm_eps, norm_elementwise_affine)
self.out_linear = nn.Linear(1536, dim)
self.out_linear = zero_module(self.out_linear)
self.mamba_norm_out = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=True,
processor=HunyuanAttnProcessor2_0(),
)
if enable_inpaint:
self.norm_clip = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.attn_clip = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=True,
processor=HunyuanAttnProcessor2_0(),
)
self.gate_clip = GEGLU(dim, dim, norm_elementwise_affine)
self.norm_clip_out = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
else:
self.attn_clip = None
self.norm_clip = None
self.gate_clip = None
self.norm_clip_out = None
# 3. Feed-forward
self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.ff = FeedForward(
dim,
dropout=dropout, ### 0.0
activation_fn=activation_fn, ### approx GeLU
final_dropout=final_dropout, ### 0.0
inner_dim=ff_inner_dim, ### int(dim * mlp_ratio)
bias=ff_bias,
)
# 4. Skip Connection
if skip:
self.skip_norm = FP32LayerNorm(2 * dim, norm_eps, elementwise_affine=True)
self.skip_linear = nn.Linear(2 * dim, dim)
else:
self.skip_linear = None
if after_norm:
self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
else:
self.norm4 = None
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
image_rotary_emb=None,
skip=None,
num_frames: int = 1,
height: int = 32,
width: int = 32,
clip_encoder_hidden_states: Optional[torch.Tensor] = None,
disable_image_rotary_emb_in_attn1=False,
) -> torch.Tensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Long Skip Connection
if self.skip_linear is not None:
cat = torch.cat([hidden_states, skip], dim=-1)
cat = self.skip_norm(cat)
hidden_states = self.skip_linear(cat)
if image_rotary_emb is not None:
image_rotary_emb = (torch.cat([image_rotary_emb[0] for i in range(num_frames)], dim=0), torch.cat([image_rotary_emb[1] for i in range(num_frames)], dim=0))
if num_frames != 1:
# add time embedding
hidden_states = rearrange(hidden_states, "b (f d) c -> (b d) f c", f=num_frames)
if self.t_embed is not None:
hidden_states = self.t_embed(hidden_states)
hidden_states = rearrange(hidden_states, "(b d) f c -> b (f d) c", d=height * width)
# 1. Self-Attention
norm_hidden_states = self.norm1(hidden_states, temb) ### checked: self.norm1 is correct
if num_frames > 2 and self.is_local_attention:
if image_rotary_emb is not None:
attn1_image_rotary_emb = (image_rotary_emb[0][:int(height * width * 2)], image_rotary_emb[1][:int(height * width * 2)])
else:
attn1_image_rotary_emb = image_rotary_emb
norm_hidden_states_1 = rearrange(norm_hidden_states, "b (f d) c -> b f d c", d=height * width)
norm_hidden_states_1 = rearrange(norm_hidden_states_1, "b (f p) d c -> (b f) (p d) c", p = 2)
attn_output = self.attn1(
norm_hidden_states_1,
image_rotary_emb=attn1_image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None,
)
attn_output = rearrange(attn_output, "(b f) (p d) c -> b (f p) d c", p = 2, f = num_frames // 2)
norm_hidden_states_2 = rearrange(norm_hidden_states, "b (f d) c -> b f d c", d = height * width)[:, 1:-1]
local_attention_frames_num = norm_hidden_states_2.size()[1] // 2
norm_hidden_states_2 = rearrange(norm_hidden_states_2, "b (f p) d c -> (b f) (p d) c", p = 2)
attn_output_2 = self.attn1(
norm_hidden_states_2,
image_rotary_emb=attn1_image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None,
)
attn_output_2 = rearrange(attn_output_2, "(b f) (p d) c -> b (f p) d c", p = 2, f = local_attention_frames_num)
attn_output[:, 1:-1] = (attn_output[:, 1:-1] + attn_output_2) / 2
attn_output = rearrange(attn_output, "b f d c -> b (f d) c")
else:
if self.kvcompression:
norm_hidden_states = rearrange(norm_hidden_states, "b (f h w) c -> b c f h w", f = num_frames, h = height, w = width)
attn_output = self.attn1(
norm_hidden_states,
image_rotary_emb=image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None,
)
else:
attn_output = self.attn1(
norm_hidden_states,
image_rotary_emb=image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None,
)
hidden_states = hidden_states + attn_output
if num_frames > 2 and self.is_local_attention:
hidden_states_in = self.in_linear(self.mamba_norm_in(hidden_states))
hidden_states = hidden_states + self.mamba_norm_out(
self.out_linear(
self.mamba_norm_after_mamba_block(
self.mamba_block_1(
self.mamba_norm_1(hidden_states_in)
) +
self.mamba_block_2(
self.mamba_norm_2(hidden_states_in.flip(1))
).flip(1)
)
)
)
# 2. Cross-Attention
hidden_states = hidden_states + self.attn2(
self.norm2(hidden_states),
encoder_hidden_states=encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
)
if self.attn_clip is not None:
hidden_states = hidden_states + self.norm_clip_out(
self.gate_clip(
self.attn_clip(
self.norm_clip(hidden_states),
encoder_hidden_states=clip_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
)
)
)
# FFN Layer ### TODO: switch norm2 and norm3 in the state dict
mlp_inputs = self.norm3(hidden_states)
if self.norm4 is not None:
hidden_states = hidden_states + self.norm4(self.ff(mlp_inputs))
else:
hidden_states = hidden_states + self.ff(mlp_inputs)
return hidden_states
@maybe_allow_in_graph
class EasyAnimateDiTBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
time_embed_dim: int,
dropout: float = 0.0,
activation_fn: str = "gelu-approximate",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-6,
final_dropout: bool = True,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
qk_norm: bool = True,
after_norm: bool = False,
norm_type: str="fp32_layer_norm",
is_mmdit_block: bool = True,
is_swa: bool = False,
):
super().__init__()
# Attention Part
self.norm1 = EasyAnimateLayerNormZero(
time_embed_dim, dim, norm_elementwise_affine, norm_eps, norm_type=norm_type, bias=True
)
self.is_swa = is_swa
self.attn1 = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=True,
processor=EasyAnimateAttnProcessor2_0() if not is_swa else EasyAnimateSWAttnProcessor2_0(),
)
if is_mmdit_block:
self.attn2 = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=True,
processor=EasyAnimateAttnProcessor2_0() if not is_swa else EasyAnimateSWAttnProcessor2_0(),
)
else:
self.attn2 = None
# FFN Part
self.norm2 = EasyAnimateLayerNormZero(
time_embed_dim, dim, norm_elementwise_affine, norm_eps, norm_type=norm_type, bias=True
)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
if is_mmdit_block:
self.txt_ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
else:
self.txt_ff = None
if after_norm:
self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
else:
self.norm3 = None
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
num_frames = None,
height = None,
width = None
) -> torch.Tensor:
# Norm
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
hidden_states, encoder_hidden_states, temb
)
# Attn
if self.is_swa:
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
attn2=self.attn2,
num_frames=num_frames,
height=height,
width=width,
)
else:
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
attn2=self.attn2
)
hidden_states = hidden_states + gate_msa * attn_hidden_states
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
# Norm
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
hidden_states, encoder_hidden_states, temb
)
# FFN
if self.norm3 is not None:
norm_hidden_states = self.norm3(self.ff(norm_hidden_states))
if self.txt_ff is not None:
norm_encoder_hidden_states = self.norm3(self.txt_ff(norm_encoder_hidden_states))
else:
norm_encoder_hidden_states = self.norm3(self.ff(norm_encoder_hidden_states))
else:
norm_hidden_states = self.ff(norm_hidden_states)
if self.txt_ff is not None:
norm_encoder_hidden_states = self.txt_ff(norm_encoder_hidden_states)
else:
norm_encoder_hidden_states = self.ff(norm_encoder_hidden_states)
hidden_states = hidden_states + gate_ff * norm_hidden_states
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * norm_encoder_hidden_states
return hidden_states, encoder_hidden_states