Spaces:
Running
Running
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple, Union | |
import diffusers | |
import pkg_resources | |
import torch | |
import torch.nn.functional as F | |
import torch.nn.init as init | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.attention import Attention, FeedForward | |
from diffusers.models.attention_processor import (Attention, | |
AttentionProcessor, | |
AttnProcessor2_0, | |
HunyuanAttnProcessor2_0) | |
from diffusers.models.embeddings import (SinusoidalPositionalEmbedding, | |
TimestepEmbedding, Timesteps, | |
get_3d_sincos_pos_embed) | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import (AdaLayerNorm, AdaLayerNormZero, | |
CogVideoXLayerNormZero) | |
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from einops import rearrange, repeat | |
from torch import nn | |
from .motion_module import PositionalEncoding, get_motion_module | |
from .norm import AdaLayerNormShift, EasyAnimateLayerNormZero, FP32LayerNorm | |
from .processor import (EasyAnimateAttnProcessor2_0, | |
EasyAnimateSWAttnProcessor2_0, | |
LazyKVCompressionProcessor2_0) | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
def zero_module(module): | |
# Zero out the parameters of a module and return it. | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class GatedSelfAttentionDense(nn.Module): | |
r""" | |
A gated self-attention dense layer that combines visual features and object features. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
context_dim (`int`): The number of channels in the context. | |
n_heads (`int`): The number of heads to use for attention. | |
d_head (`int`): The number of channels in each head. | |
""" | |
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
super().__init__() | |
# we need a linear projection since we need cat visual feature and obj feature | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, activation_fn="geglu") | |
self.norm1 = FP32LayerNorm(query_dim) | |
self.norm2 = FP32LayerNorm(query_dim) | |
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
self.enabled = True | |
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
if not self.enabled: | |
return x | |
n_visual = x.shape[1] | |
objs = self.linear(objs) | |
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
return x | |
class LazyKVCompressionAttention(Attention): | |
def __init__( | |
self, | |
sr_ratio=2, *args, **kwargs | |
): | |
super().__init__(*args, **kwargs) | |
self.sr_ratio = sr_ratio | |
self.k_compression = nn.Conv2d( | |
kwargs["query_dim"], | |
kwargs["query_dim"], | |
groups=kwargs["query_dim"], | |
kernel_size=sr_ratio, | |
stride=sr_ratio, | |
bias=True | |
) | |
self.v_compression = nn.Conv2d( | |
kwargs["query_dim"], | |
kwargs["query_dim"], | |
groups=kwargs["query_dim"], | |
kernel_size=sr_ratio, | |
stride=sr_ratio, | |
bias=True | |
) | |
init.constant_(self.k_compression.weight, 1 / (sr_ratio * sr_ratio)) | |
init.constant_(self.v_compression.weight, 1 / (sr_ratio * sr_ratio)) | |
init.constant_(self.k_compression.bias, 0) | |
init.constant_(self.v_compression.bias, 0) | |
class TemporalTransformerBlock(nn.Module): | |
r""" | |
A Temporal Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
# motion module kwargs | |
motion_module_type = "VanillaGrid", | |
motion_module_kwargs = None, | |
qk_norm = False, | |
after_norm = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) | |
self.attn_temporal = get_motion_module( | |
in_channels = dim, | |
motion_module_type = motion_module_type, | |
motion_module_kwargs = motion_module_kwargs, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
if after_norm: | |
self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
else: | |
self.norm4 = None | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# 5. Scale-shift for PixArt-Alpha. | |
if self.use_ada_layer_norm_single: | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
num_frames: int = 16, | |
height: int = 32, | |
width: int = 32, | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.use_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 2. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
norm_hidden_states = rearrange(norm_hidden_states, "b (f d) c -> (b f) d c", f=num_frames) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
attn_output = rearrange(attn_output, "(b f) d c -> b (f d) c", f=num_frames) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.use_ada_layer_norm_single: | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 2.75. Temp-Attention | |
if self.attn_temporal is not None: | |
attn_output = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=num_frames, h=height, w=width) | |
attn_output = self.attn_temporal(attn_output) | |
hidden_states = rearrange(attn_output, "b c f h w -> b (f h w) c") | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.use_ada_layer_norm_single is None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
if norm_hidden_states.dtype != encoder_hidden_states.dtype or norm_hidden_states.dtype != encoder_attention_mask.dtype: | |
norm_hidden_states = norm_hidden_states.to(encoder_hidden_states.dtype) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
ff_output = torch.cat( | |
[ | |
self.ff(hid_slice, scale=lora_scale) | |
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) | |
], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.norm4 is not None: | |
ff_output = self.norm4(ff_output) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.use_ada_layer_norm_single: | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class SelfAttentionTemporalTransformerBlock(nn.Module): | |
r""" | |
A Temporal Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
qk_norm = False, | |
after_norm = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
if after_norm: | |
self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
else: | |
self.norm4 = None | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# 5. Scale-shift for PixArt-Alpha. | |
if self.use_ada_layer_norm_single: | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.use_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 2. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.use_ada_layer_norm_single: | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.use_ada_layer_norm_single is None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
ff_output = torch.cat( | |
[ | |
self.ff(hid_slice, scale=lora_scale) | |
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) | |
], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.norm4 is not None: | |
ff_output = self.norm4(ff_output) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.use_ada_layer_norm_single: | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out, norm_elementwise_affine): | |
super().__init__() | |
self.norm = FP32LayerNorm(dim_in, dim_in, norm_elementwise_affine) | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(self.norm(x)).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class HunyuanDiTBlock(nn.Module): | |
r""" | |
Transformer block used in Hunyuan-DiT model (https://github.com/Tencent/HunyuanDiT). Allow skip connection and | |
QKNorm | |
Parameters: | |
dim (`int`): | |
The number of channels in the input and output. | |
num_attention_heads (`int`): | |
The number of headsto use for multi-head attention. | |
cross_attention_dim (`int`,*optional*): | |
The size of the encoder_hidden_states vector for cross attention. | |
dropout(`float`, *optional*, defaults to 0.0): | |
The dropout probability to use. | |
activation_fn (`str`,*optional*, defaults to `"geglu"`): | |
Activation function to be used in feed-forward. . | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_eps (`float`, *optional*, defaults to 1e-6): | |
A small constant added to the denominator in normalization layers to prevent division by zero. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
ff_inner_dim (`int`, *optional*): | |
The size of the hidden layer in the feed-forward block. Defaults to `None`. | |
ff_bias (`bool`, *optional*, defaults to `True`): | |
Whether to use bias in the feed-forward block. | |
skip (`bool`, *optional*, defaults to `False`): | |
Whether to use skip connection. Defaults to `False` for down-blocks and mid-blocks. | |
qk_norm (`bool`, *optional*, defaults to `True`): | |
Whether to use normalization in QK calculation. Defaults to `True`. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
cross_attention_dim: int = 1024, | |
dropout=0.0, | |
activation_fn: str = "geglu", | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-6, | |
final_dropout: bool = False, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
skip: bool = False, | |
qk_norm: bool = True, | |
time_position_encoding: bool = False, | |
after_norm: bool = False, | |
is_local_attention: bool = False, | |
local_attention_frames: int = 2, | |
enable_inpaint: bool = False, | |
kvcompression = False, | |
): | |
super().__init__() | |
# Define 3 blocks. Each block has its own normalization layer. | |
# NOTE: when new version comes, check norm2 and norm 3 | |
# 1. Self-Attn | |
self.norm1 = AdaLayerNormShift(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.t_embed = PositionalEncoding(dim, dropout=0., max_len=512) \ | |
if time_position_encoding else nn.Identity() | |
self.is_local_attention = is_local_attention | |
self.local_attention_frames = local_attention_frames | |
self.kvcompression = kvcompression | |
if kvcompression: | |
self.attn1 = LazyKVCompressionAttention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
dim_head=dim // num_attention_heads, | |
heads=num_attention_heads, | |
qk_norm="layer_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=True, | |
processor=LazyKVCompressionProcessor2_0(), | |
) | |
else: | |
self.attn1 = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
dim_head=dim // num_attention_heads, | |
heads=num_attention_heads, | |
qk_norm="layer_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=True, | |
processor=HunyuanAttnProcessor2_0(), | |
) | |
# 2. Cross-Attn | |
self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
if self.is_local_attention: | |
from mamba_ssm import Mamba2 | |
self.mamba_norm_in = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.in_linear = nn.Linear(dim, 1536) | |
self.mamba_norm_1 = FP32LayerNorm(1536, norm_eps, norm_elementwise_affine) | |
self.mamba_norm_2 = FP32LayerNorm(1536, norm_eps, norm_elementwise_affine) | |
self.mamba_block_1 = Mamba2( | |
d_model=1536, | |
d_state=64, | |
d_conv=4, | |
expand=2, | |
) | |
self.mamba_block_2 = Mamba2( | |
d_model=1536, | |
d_state=64, | |
d_conv=4, | |
expand=2, | |
) | |
self.mamba_norm_after_mamba_block = FP32LayerNorm(1536, norm_eps, norm_elementwise_affine) | |
self.out_linear = nn.Linear(1536, dim) | |
self.out_linear = zero_module(self.out_linear) | |
self.mamba_norm_out = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
dim_head=dim // num_attention_heads, | |
heads=num_attention_heads, | |
qk_norm="layer_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=True, | |
processor=HunyuanAttnProcessor2_0(), | |
) | |
if enable_inpaint: | |
self.norm_clip = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.attn_clip = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
dim_head=dim // num_attention_heads, | |
heads=num_attention_heads, | |
qk_norm="layer_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=True, | |
processor=HunyuanAttnProcessor2_0(), | |
) | |
self.gate_clip = GEGLU(dim, dim, norm_elementwise_affine) | |
self.norm_clip_out = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
else: | |
self.attn_clip = None | |
self.norm_clip = None | |
self.gate_clip = None | |
self.norm_clip_out = None | |
# 3. Feed-forward | |
self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, ### 0.0 | |
activation_fn=activation_fn, ### approx GeLU | |
final_dropout=final_dropout, ### 0.0 | |
inner_dim=ff_inner_dim, ### int(dim * mlp_ratio) | |
bias=ff_bias, | |
) | |
# 4. Skip Connection | |
if skip: | |
self.skip_norm = FP32LayerNorm(2 * dim, norm_eps, elementwise_affine=True) | |
self.skip_linear = nn.Linear(2 * dim, dim) | |
else: | |
self.skip_linear = None | |
if after_norm: | |
self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
else: | |
self.norm4 = None | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
temb: Optional[torch.Tensor] = None, | |
image_rotary_emb=None, | |
skip=None, | |
num_frames: int = 1, | |
height: int = 32, | |
width: int = 32, | |
clip_encoder_hidden_states: Optional[torch.Tensor] = None, | |
disable_image_rotary_emb_in_attn1=False, | |
) -> torch.Tensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Long Skip Connection | |
if self.skip_linear is not None: | |
cat = torch.cat([hidden_states, skip], dim=-1) | |
cat = self.skip_norm(cat) | |
hidden_states = self.skip_linear(cat) | |
if image_rotary_emb is not None: | |
image_rotary_emb = (torch.cat([image_rotary_emb[0] for i in range(num_frames)], dim=0), torch.cat([image_rotary_emb[1] for i in range(num_frames)], dim=0)) | |
if num_frames != 1: | |
# add time embedding | |
hidden_states = rearrange(hidden_states, "b (f d) c -> (b d) f c", f=num_frames) | |
if self.t_embed is not None: | |
hidden_states = self.t_embed(hidden_states) | |
hidden_states = rearrange(hidden_states, "(b d) f c -> b (f d) c", d=height * width) | |
# 1. Self-Attention | |
norm_hidden_states = self.norm1(hidden_states, temb) ### checked: self.norm1 is correct | |
if num_frames > 2 and self.is_local_attention: | |
if image_rotary_emb is not None: | |
attn1_image_rotary_emb = (image_rotary_emb[0][:int(height * width * 2)], image_rotary_emb[1][:int(height * width * 2)]) | |
else: | |
attn1_image_rotary_emb = image_rotary_emb | |
norm_hidden_states_1 = rearrange(norm_hidden_states, "b (f d) c -> b f d c", d=height * width) | |
norm_hidden_states_1 = rearrange(norm_hidden_states_1, "b (f p) d c -> (b f) (p d) c", p = 2) | |
attn_output = self.attn1( | |
norm_hidden_states_1, | |
image_rotary_emb=attn1_image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None, | |
) | |
attn_output = rearrange(attn_output, "(b f) (p d) c -> b (f p) d c", p = 2, f = num_frames // 2) | |
norm_hidden_states_2 = rearrange(norm_hidden_states, "b (f d) c -> b f d c", d = height * width)[:, 1:-1] | |
local_attention_frames_num = norm_hidden_states_2.size()[1] // 2 | |
norm_hidden_states_2 = rearrange(norm_hidden_states_2, "b (f p) d c -> (b f) (p d) c", p = 2) | |
attn_output_2 = self.attn1( | |
norm_hidden_states_2, | |
image_rotary_emb=attn1_image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None, | |
) | |
attn_output_2 = rearrange(attn_output_2, "(b f) (p d) c -> b (f p) d c", p = 2, f = local_attention_frames_num) | |
attn_output[:, 1:-1] = (attn_output[:, 1:-1] + attn_output_2) / 2 | |
attn_output = rearrange(attn_output, "b f d c -> b (f d) c") | |
else: | |
if self.kvcompression: | |
norm_hidden_states = rearrange(norm_hidden_states, "b (f h w) c -> b c f h w", f = num_frames, h = height, w = width) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
image_rotary_emb=image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None, | |
) | |
else: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
image_rotary_emb=image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None, | |
) | |
hidden_states = hidden_states + attn_output | |
if num_frames > 2 and self.is_local_attention: | |
hidden_states_in = self.in_linear(self.mamba_norm_in(hidden_states)) | |
hidden_states = hidden_states + self.mamba_norm_out( | |
self.out_linear( | |
self.mamba_norm_after_mamba_block( | |
self.mamba_block_1( | |
self.mamba_norm_1(hidden_states_in) | |
) + | |
self.mamba_block_2( | |
self.mamba_norm_2(hidden_states_in.flip(1)) | |
).flip(1) | |
) | |
) | |
) | |
# 2. Cross-Attention | |
hidden_states = hidden_states + self.attn2( | |
self.norm2(hidden_states), | |
encoder_hidden_states=encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
) | |
if self.attn_clip is not None: | |
hidden_states = hidden_states + self.norm_clip_out( | |
self.gate_clip( | |
self.attn_clip( | |
self.norm_clip(hidden_states), | |
encoder_hidden_states=clip_encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
) | |
) | |
) | |
# FFN Layer ### TODO: switch norm2 and norm3 in the state dict | |
mlp_inputs = self.norm3(hidden_states) | |
if self.norm4 is not None: | |
hidden_states = hidden_states + self.norm4(self.ff(mlp_inputs)) | |
else: | |
hidden_states = hidden_states + self.ff(mlp_inputs) | |
return hidden_states | |
class EasyAnimateDiTBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
time_embed_dim: int, | |
dropout: float = 0.0, | |
activation_fn: str = "gelu-approximate", | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-6, | |
final_dropout: bool = True, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
qk_norm: bool = True, | |
after_norm: bool = False, | |
norm_type: str="fp32_layer_norm", | |
is_mmdit_block: bool = True, | |
is_swa: bool = False, | |
): | |
super().__init__() | |
# Attention Part | |
self.norm1 = EasyAnimateLayerNormZero( | |
time_embed_dim, dim, norm_elementwise_affine, norm_eps, norm_type=norm_type, bias=True | |
) | |
self.is_swa = is_swa | |
self.attn1 = Attention( | |
query_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
qk_norm="layer_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=True, | |
processor=EasyAnimateAttnProcessor2_0() if not is_swa else EasyAnimateSWAttnProcessor2_0(), | |
) | |
if is_mmdit_block: | |
self.attn2 = Attention( | |
query_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
qk_norm="layer_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=True, | |
processor=EasyAnimateAttnProcessor2_0() if not is_swa else EasyAnimateSWAttnProcessor2_0(), | |
) | |
else: | |
self.attn2 = None | |
# FFN Part | |
self.norm2 = EasyAnimateLayerNormZero( | |
time_embed_dim, dim, norm_elementwise_affine, norm_eps, norm_type=norm_type, bias=True | |
) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
if is_mmdit_block: | |
self.txt_ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
else: | |
self.txt_ff = None | |
if after_norm: | |
self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
else: | |
self.norm3 = None | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
num_frames = None, | |
height = None, | |
width = None | |
) -> torch.Tensor: | |
# Norm | |
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( | |
hidden_states, encoder_hidden_states, temb | |
) | |
# Attn | |
if self.is_swa: | |
attn_hidden_states, attn_encoder_hidden_states = self.attn1( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
attn2=self.attn2, | |
num_frames=num_frames, | |
height=height, | |
width=width, | |
) | |
else: | |
attn_hidden_states, attn_encoder_hidden_states = self.attn1( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
attn2=self.attn2 | |
) | |
hidden_states = hidden_states + gate_msa * attn_hidden_states | |
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states | |
# Norm | |
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( | |
hidden_states, encoder_hidden_states, temb | |
) | |
# FFN | |
if self.norm3 is not None: | |
norm_hidden_states = self.norm3(self.ff(norm_hidden_states)) | |
if self.txt_ff is not None: | |
norm_encoder_hidden_states = self.norm3(self.txt_ff(norm_encoder_hidden_states)) | |
else: | |
norm_encoder_hidden_states = self.norm3(self.ff(norm_encoder_hidden_states)) | |
else: | |
norm_hidden_states = self.ff(norm_hidden_states) | |
if self.txt_ff is not None: | |
norm_encoder_hidden_states = self.txt_ff(norm_encoder_hidden_states) | |
else: | |
norm_encoder_hidden_states = self.ff(norm_encoder_hidden_states) | |
hidden_states = hidden_states + gate_ff * norm_hidden_states | |
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * norm_encoder_hidden_states | |
return hidden_states, encoder_hidden_states |