Spaces:
Running
Running
"""Modified from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/motion_module.py | |
""" | |
import math | |
import diffusers | |
import pkg_resources | |
import torch | |
installed_version = diffusers.__version__ | |
if pkg_resources.parse_version(installed_version) >= pkg_resources.parse_version("0.28.2"): | |
from diffusers.models.attention_processor import (Attention, | |
AttnProcessor2_0, | |
HunyuanAttnProcessor2_0) | |
else: | |
from diffusers.models.attention_processor import Attention, AttnProcessor2_0 | |
from diffusers.models.attention import FeedForward | |
from diffusers.utils.import_utils import is_xformers_available | |
from einops import rearrange, repeat | |
from torch import nn | |
from .norm import FP32LayerNorm | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
def zero_module(module): | |
# Zero out the parameters of a module and return it. | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def get_motion_module( | |
in_channels, | |
motion_module_type: str, | |
motion_module_kwargs: dict, | |
): | |
if motion_module_type == "Vanilla": | |
return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs,) | |
elif motion_module_type == "VanillaGrid": | |
return VanillaTemporalModule(in_channels=in_channels, grid=True, **motion_module_kwargs,) | |
else: | |
raise ValueError | |
class VanillaTemporalModule(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
num_attention_heads = 8, | |
num_transformer_block = 2, | |
attention_block_types =( "Temporal_Self", "Temporal_Self" ), | |
cross_frame_attention_mode = None, | |
temporal_position_encoding = False, | |
temporal_position_encoding_max_len = 4096, | |
temporal_attention_dim_div = 1, | |
zero_initialize = True, | |
block_size = 1, | |
grid = False, | |
remove_time_embedding_in_photo = False, | |
global_num_attention_heads = 16, | |
global_attention = False, | |
qk_norm = False, | |
): | |
super().__init__() | |
self.temporal_transformer = TemporalTransformer3DModel( | |
in_channels=in_channels, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, | |
num_layers=num_transformer_block, | |
attention_block_types=attention_block_types, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
grid=grid, | |
block_size=block_size, | |
remove_time_embedding_in_photo=remove_time_embedding_in_photo, | |
qk_norm=qk_norm, | |
) | |
self.global_transformer = GlobalTransformer3DModel( | |
in_channels=in_channels, | |
num_attention_heads=global_num_attention_heads, | |
attention_head_dim=in_channels // global_num_attention_heads // temporal_attention_dim_div, | |
qk_norm=qk_norm, | |
) if global_attention else None | |
if zero_initialize: | |
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) | |
if global_attention: | |
self.global_transformer.proj_out = zero_module(self.global_transformer.proj_out) | |
def forward(self, input_tensor, encoder_hidden_states=None, attention_mask=None, anchor_frame_idx=None): | |
hidden_states = input_tensor | |
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask) | |
if self.global_transformer is not None: | |
hidden_states = self.global_transformer(hidden_states) | |
output = hidden_states | |
return output | |
class GlobalTransformer3DModel(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
num_attention_heads, | |
attention_head_dim, | |
dropout = 0.0, | |
attention_bias = False, | |
upcast_attention = False, | |
qk_norm = False, | |
): | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
self.norm1 = FP32LayerNorm(inner_dim) | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.norm2 = FP32LayerNorm(inner_dim) | |
if pkg_resources.parse_version(installed_version) >= pkg_resources.parse_version("0.28.2"): | |
self.attention = Attention( | |
query_dim=inner_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) | |
else: | |
self.attention = Attention( | |
query_dim=inner_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
self.proj_out = nn.Linear(inner_dim, in_channels) | |
def forward(self, hidden_states): | |
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
video_length, height, width = hidden_states.shape[2], hidden_states.shape[3], hidden_states.shape[4] | |
hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c") | |
residual = hidden_states | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.proj_in(hidden_states) | |
# Attention Blocks | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = self.attention(hidden_states) | |
hidden_states = self.proj_out(hidden_states) | |
output = hidden_states + residual | |
output = rearrange(output, "b (f h w) c -> b c f h w", f=video_length, h=height, w=width) | |
return output | |
class TemporalTransformer3DModel(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
num_attention_heads, | |
attention_head_dim, | |
num_layers, | |
attention_block_types = ( "Temporal_Self", "Temporal_Self", ), | |
dropout = 0.0, | |
norm_num_groups = 32, | |
cross_attention_dim = 768, | |
activation_fn = "geglu", | |
attention_bias = False, | |
upcast_attention = False, | |
cross_frame_attention_mode = None, | |
temporal_position_encoding = False, | |
temporal_position_encoding_max_len = 4096, | |
grid = False, | |
block_size = 1, | |
remove_time_embedding_in_photo = False, | |
qk_norm = False, | |
): | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.block_size = block_size | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
TemporalTransformerBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
attention_block_types=attention_block_types, | |
dropout=dropout, | |
norm_num_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
upcast_attention=upcast_attention, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
block_size=block_size, | |
grid=grid, | |
remove_time_embedding_in_photo=remove_time_embedding_in_photo, | |
qk_norm=qk_norm | |
) | |
for d in range(num_layers) | |
] | |
) | |
self.proj_out = nn.Linear(inner_dim, in_channels) | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
video_length = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
batch, channel, height, weight = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
hidden_states = self.proj_in(hidden_states) | |
# Transformer Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length, height=height, weight=weight) | |
# output | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
output = hidden_states + residual | |
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
return output | |
class TemporalTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_attention_heads, | |
attention_head_dim, | |
attention_block_types = ( "Temporal_Self", "Temporal_Self", ), | |
dropout = 0.0, | |
norm_num_groups = 32, | |
cross_attention_dim = 768, | |
activation_fn = "geglu", | |
attention_bias = False, | |
upcast_attention = False, | |
cross_frame_attention_mode = None, | |
temporal_position_encoding = False, | |
temporal_position_encoding_max_len = 4096, | |
block_size = 1, | |
grid = False, | |
remove_time_embedding_in_photo = False, | |
qk_norm = False, | |
): | |
super().__init__() | |
attention_blocks = [] | |
norms = [] | |
for block_name in attention_block_types: | |
attention_blocks.append( | |
VersatileAttention( | |
attention_mode=block_name.split("_")[0], | |
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
block_size=block_size, | |
grid=grid, | |
remove_time_embedding_in_photo=remove_time_embedding_in_photo, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) if pkg_resources.parse_version(installed_version) >= pkg_resources.parse_version("0.28.2") else \ | |
VersatileAttention( | |
attention_mode=block_name.split("_")[0], | |
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
block_size=block_size, | |
grid=grid, | |
remove_time_embedding_in_photo=remove_time_embedding_in_photo, | |
) | |
) | |
norms.append(FP32LayerNorm(dim)) | |
self.attention_blocks = nn.ModuleList(attention_blocks) | |
self.norms = nn.ModuleList(norms) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
self.ff_norm = FP32LayerNorm(dim) | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, height=None, weight=None): | |
for attention_block, norm in zip(self.attention_blocks, self.norms): | |
norm_hidden_states = norm(hidden_states) | |
hidden_states = attention_block( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, | |
video_length=video_length, | |
height=height, | |
weight=weight, | |
) + hidden_states | |
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states | |
output = hidden_states | |
return output | |
class PositionalEncoding(nn.Module): | |
def __init__( | |
self, | |
d_model, | |
dropout = 0., | |
max_len = 4096 | |
): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
position = torch.arange(max_len).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) | |
pe = torch.zeros(1, max_len, d_model) | |
pe[0, :, 0::2] = torch.sin(position * div_term) | |
pe[0, :, 1::2] = torch.cos(position * div_term) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
x = x + self.pe[:, :x.size(1)] | |
return self.dropout(x) | |
class VersatileAttention(Attention): | |
def __init__( | |
self, | |
attention_mode = None, | |
cross_frame_attention_mode = None, | |
temporal_position_encoding = False, | |
temporal_position_encoding_max_len = 4096, | |
grid = False, | |
block_size = 1, | |
remove_time_embedding_in_photo = False, | |
*args, **kwargs | |
): | |
super().__init__(*args, **kwargs) | |
assert attention_mode == "Temporal" or attention_mode == "Global" | |
self.attention_mode = attention_mode | |
self.is_cross_attention = kwargs["cross_attention_dim"] is not None | |
self.block_size = block_size | |
self.grid = grid | |
self.remove_time_embedding_in_photo = remove_time_embedding_in_photo | |
self.pos_encoder = PositionalEncoding( | |
kwargs["query_dim"], | |
dropout=0., | |
max_len=temporal_position_encoding_max_len | |
) if (temporal_position_encoding and attention_mode == "Temporal") or (temporal_position_encoding and attention_mode == "Global") else None | |
def extra_repr(self): | |
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, height=None, weight=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
if self.attention_mode == "Temporal": | |
# for add pos_encoder | |
_, before_d, _c = hidden_states.size() | |
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
if self.remove_time_embedding_in_photo: | |
if self.pos_encoder is not None and video_length > 1: | |
hidden_states = self.pos_encoder(hidden_states) | |
else: | |
if self.pos_encoder is not None: | |
hidden_states = self.pos_encoder(hidden_states) | |
if self.grid: | |
hidden_states = rearrange(hidden_states, "(b d) f c -> b f d c", f=video_length, d=before_d) | |
hidden_states = rearrange(hidden_states, "b f (h w) c -> b f h w c", h=height, w=weight) | |
hidden_states = rearrange(hidden_states, "b f (h n) (w m) c -> (b h w) (f n m) c", n=self.block_size, m=self.block_size) | |
d = before_d // self.block_size // self.block_size | |
else: | |
d = before_d | |
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states | |
elif self.attention_mode == "Global": | |
# for add pos_encoder | |
_, d, _c = hidden_states.size() | |
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
if self.pos_encoder is not None: | |
hidden_states = self.pos_encoder(hidden_states) | |
hidden_states = rearrange(hidden_states, "(b d) f c -> b (f d) c", f=video_length, d=d) | |
else: | |
raise NotImplementedError | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
bs = 512 | |
new_hidden_states = [] | |
for i in range(0, hidden_states.shape[0], bs): | |
__hidden_states = super().forward( | |
hidden_states[i : i + bs], | |
encoder_hidden_states=encoder_hidden_states[i : i + bs], | |
attention_mask=attention_mask | |
) | |
new_hidden_states.append(__hidden_states) | |
hidden_states = torch.cat(new_hidden_states, dim = 0) | |
if self.attention_mode == "Temporal": | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
if self.grid: | |
hidden_states = rearrange(hidden_states, "(b f n m) (h w) c -> (b f) h n w m c", f=video_length, n=self.block_size, m=self.block_size, h=height // self.block_size, w=weight // self.block_size) | |
hidden_states = rearrange(hidden_states, "b h n w m c -> b (h n) (w m) c") | |
hidden_states = rearrange(hidden_states, "b h w c -> b (h w) c") | |
elif self.attention_mode == "Global": | |
hidden_states = rearrange(hidden_states, "b (f d) c -> (b f) d c", f=video_length, d=d) | |
return hidden_states |