Spaces:
Running
Running
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import glob | |
import json | |
import math | |
import os | |
from dataclasses import dataclass | |
from typing import Any, Dict, Optional | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.attention import BasicTransformerBlock | |
from diffusers.models.embeddings import (PatchEmbed, PixArtAlphaTextProjection, | |
TimestepEmbedding, Timesteps, | |
get_2d_sincos_pos_embed) | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous | |
from diffusers.utils import (USE_PEFT_BACKEND, BaseOutput, is_torch_version, | |
logging) | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from einops import rearrange | |
from torch import nn | |
from .attention import (EasyAnimateDiTBlock, HunyuanDiTBlock, | |
SelfAttentionTemporalTransformerBlock, | |
TemporalTransformerBlock, zero_module) | |
from .embeddings import (HunyuanCombinedTimestepTextSizeStyleEmbedding, | |
TimePositionalEncoding) | |
from .norm import AdaLayerNormSingle, EasyAnimateRMSNorm | |
from .patch import (CasualPatchEmbed3D, PatchEmbed3D, PatchEmbedF3D, | |
TemporalUpsampler3D, UnPatch1D) | |
from .resampler import Resampler | |
try: | |
from diffusers.models.embeddings import PixArtAlphaTextProjection | |
except: | |
from diffusers.models.embeddings import \ | |
CaptionProjection as PixArtAlphaTextProjection | |
class CLIPProjection(nn.Module): | |
""" | |
Projects caption embeddings. Also handles dropout for classifier-free guidance. | |
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py | |
""" | |
def __init__(self, in_features, hidden_size, num_tokens=120): | |
super().__init__() | |
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True) | |
self.act_1 = nn.GELU(approximate="tanh") | |
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True) | |
self.linear_2 = zero_module(self.linear_2) | |
def forward(self, caption): | |
hidden_states = self.linear_1(caption) | |
hidden_states = self.act_1(hidden_states) | |
hidden_states = self.linear_2(hidden_states) | |
return hidden_states | |
class Transformer3DModelOutput(BaseOutput): | |
""" | |
The output of [`Transformer2DModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability | |
distributions for the unnoised latent pixels. | |
""" | |
sample: torch.FloatTensor | |
class Transformer3DModel(ModelMixin, ConfigMixin): | |
""" | |
A 3D Transformer model for image-like data. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
The number of channels in the input and output (specify if the input is **continuous**). | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
This is fixed during training since it is used to learn a number of position embeddings. | |
num_vector_embeds (`int`, *optional*): | |
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). | |
Includes the class for the masked latent pixel. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. | |
num_embeds_ada_norm ( `int`, *optional*): | |
The number of diffusion steps used during training. Pass if at least one of the norm_layers is | |
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are | |
added to the hidden states. | |
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. | |
attention_bias (`bool`, *optional*): | |
Configure if the `TransformerBlocks` attention should contain a bias parameter. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
num_vector_embeds: Optional[int] = None, | |
patch_size: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_type: str = "layer_norm", | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
attention_type: str = "default", | |
caption_channels: int = None, | |
n_query=8, | |
# block type | |
basic_block_type: str = "motionmodule", | |
# enable_uvit | |
enable_uvit: bool = False, | |
# 3d patch params | |
patch_3d: bool = False, | |
fake_3d: bool = False, | |
time_patch_size: Optional[int] = None, | |
casual_3d: bool = False, | |
casual_3d_upsampler_index: Optional[list] = None, | |
# motion module kwargs | |
motion_module_type = "VanillaGrid", | |
motion_module_kwargs = None, | |
motion_module_kwargs_odd = None, | |
motion_module_kwargs_even = None, | |
# time position encoding | |
time_position_encoding_before_transformer = False, | |
qk_norm = False, | |
after_norm = False, | |
resize_inpaint_mask_directly: bool = False, | |
enable_clip_in_inpaint: bool = True, | |
position_of_clip_embedding: str = "head", | |
enable_zero_in_inpaint: bool = False, | |
enable_text_attention_mask: bool = True, | |
add_noise_in_inpaint_model: bool = False, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
self.enable_uvit = enable_uvit | |
inner_dim = num_attention_heads * attention_head_dim | |
self.basic_block_type = basic_block_type | |
self.patch_3d = patch_3d | |
self.fake_3d = fake_3d | |
self.casual_3d = casual_3d | |
self.casual_3d_upsampler_index = casual_3d_upsampler_index | |
assert sample_size is not None, "Transformer3DModel over patched input must provide sample_size" | |
self.height = sample_size | |
self.width = sample_size | |
self.patch_size = patch_size | |
self.time_patch_size = self.patch_size if time_patch_size is None else time_patch_size | |
interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1 | |
interpolation_scale = max(interpolation_scale, 1) | |
self.n_query = n_query | |
if self.casual_3d: | |
self.pos_embed = CasualPatchEmbed3D( | |
height=sample_size, | |
width=sample_size, | |
patch_size=patch_size, | |
time_patch_size=self.time_patch_size, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
interpolation_scale=interpolation_scale, | |
) | |
elif self.patch_3d: | |
if self.fake_3d: | |
self.pos_embed = PatchEmbedF3D( | |
height=sample_size, | |
width=sample_size, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
interpolation_scale=interpolation_scale, | |
) | |
else: | |
self.pos_embed = PatchEmbed3D( | |
height=sample_size, | |
width=sample_size, | |
patch_size=patch_size, | |
time_patch_size=self.time_patch_size, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
interpolation_scale=interpolation_scale, | |
) | |
else: | |
self.pos_embed = PatchEmbed( | |
height=sample_size, | |
width=sample_size, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
interpolation_scale=interpolation_scale, | |
) | |
# 3. Define transformers blocks | |
if self.basic_block_type == "motionmodule": | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
TemporalTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
double_self_attention=double_self_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
attention_type=attention_type, | |
motion_module_type=motion_module_type, | |
motion_module_kwargs=motion_module_kwargs, | |
qk_norm=qk_norm, | |
after_norm=after_norm, | |
) | |
for d in range(num_layers) | |
] | |
) | |
elif self.basic_block_type == "global_motionmodule": | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
TemporalTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
double_self_attention=double_self_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
attention_type=attention_type, | |
motion_module_type=motion_module_type, | |
motion_module_kwargs=motion_module_kwargs_even if d % 2 == 0 else motion_module_kwargs_odd, | |
qk_norm=qk_norm, | |
after_norm=after_norm, | |
) | |
for d in range(num_layers) | |
] | |
) | |
elif self.basic_block_type == "selfattentiontemporal": | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
SelfAttentionTemporalTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
double_self_attention=double_self_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
attention_type=attention_type, | |
qk_norm=qk_norm, | |
after_norm=after_norm, | |
) | |
for d in range(num_layers) | |
] | |
) | |
else: | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
double_self_attention=double_self_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
attention_type=attention_type, | |
) | |
for d in range(num_layers) | |
] | |
) | |
if self.casual_3d: | |
self.unpatch1d = TemporalUpsampler3D() | |
elif self.patch_3d and self.fake_3d: | |
self.unpatch1d = UnPatch1D(inner_dim, True) | |
if self.enable_uvit: | |
self.long_connect_fc = nn.ModuleList( | |
[ | |
nn.Linear(inner_dim, inner_dim, True) for d in range(13) | |
] | |
) | |
for index in range(13): | |
self.long_connect_fc[index] = zero_module(self.long_connect_fc[index]) | |
# 4. Define output layers | |
self.out_channels = in_channels if out_channels is None else out_channels | |
if norm_type != "ada_norm_single": | |
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) | |
if self.patch_3d and not self.fake_3d: | |
self.proj_out_2 = nn.Linear(inner_dim, self.time_patch_size * patch_size * patch_size * self.out_channels) | |
else: | |
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
elif norm_type == "ada_norm_single": | |
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) | |
if self.patch_3d and not self.fake_3d: | |
self.proj_out = nn.Linear(inner_dim, self.time_patch_size * patch_size * patch_size * self.out_channels) | |
else: | |
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
# 5. PixArt-Alpha blocks. | |
self.adaln_single = None | |
self.use_additional_conditions = False | |
if norm_type == "ada_norm_single": | |
self.use_additional_conditions = self.config.sample_size == 128 | |
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use | |
# additional conditions until we find better name | |
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) | |
self.caption_projection = None | |
self.clip_projection = None | |
if caption_channels is not None: | |
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) | |
if in_channels == 12: | |
self.clip_projection = CLIPProjection(in_features=768, hidden_size=inner_dim * 8) | |
self.gradient_checkpointing = False | |
self.time_position_encoding_before_transformer = time_position_encoding_before_transformer | |
if self.time_position_encoding_before_transformer: | |
self.t_pos = TimePositionalEncoding(max_len = 4096, d_model = inner_dim) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: Optional[torch.LongTensor] = None, | |
timestep_cond = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
text_embedding_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states_t5: Optional[torch.Tensor] = None, | |
text_embedding_mask_t5: Optional[torch.Tensor] = None, | |
image_meta_size = None, | |
style = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
inpaint_latents: torch.Tensor = None, | |
control_latents: torch.Tensor = None, | |
added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
clip_encoder_hidden_states: Optional[torch.Tensor] = None, | |
clip_attention_mask: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
): | |
""" | |
The [`Transformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): | |
Input `hidden_states`. | |
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `torch.LongTensor`, *optional*): | |
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
`AdaLayerZeroNorm`. | |
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
attention_mask ( `torch.Tensor`, *optional*): | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
negative values to the attention scores corresponding to "discard" tokens. | |
text_embedding_mask ( `torch.Tensor`, *optional*): | |
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
* Mask `(batch, sequence_length)` True = keep, False = discard. | |
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
above. This bias will be added to the cross-attention scores. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer3DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None and attention_mask.ndim == 2: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
text_embedding_mask = text_embedding_mask.squeeze(1) | |
if clip_attention_mask is not None: | |
text_embedding_mask = torch.cat([text_embedding_mask, clip_attention_mask], dim=1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if text_embedding_mask is not None and text_embedding_mask.ndim == 2: | |
encoder_attention_mask = (1 - text_embedding_mask.to(encoder_hidden_states.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
if inpaint_latents is not None: | |
hidden_states = torch.concat([hidden_states, inpaint_latents], 1) | |
if control_latents is not None: | |
hidden_states = torch.concat([hidden_states, control_latents], 1) | |
# 1. Input | |
if self.casual_3d: | |
video_length, height, width = (hidden_states.shape[-3] - 1) // self.time_patch_size + 1, hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
elif self.patch_3d: | |
video_length, height, width = hidden_states.shape[-3] // self.time_patch_size, hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
else: | |
video_length, height, width = hidden_states.shape[-3], hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
hidden_states = rearrange(hidden_states, "b c f h w ->(b f) c h w") | |
hidden_states = self.pos_embed(hidden_states) | |
if self.adaln_single is not None: | |
if self.use_additional_conditions and added_cond_kwargs is None: | |
raise ValueError( | |
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." | |
) | |
batch_size = hidden_states.shape[0] // video_length | |
timestep, embedded_timestep = self.adaln_single( | |
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype | |
) | |
hidden_states = rearrange(hidden_states, "(b f) (h w) c -> b c f h w", f=video_length, h=height, w=width) | |
# hidden_states | |
# bs, c, f, h, w => b (f h w ) c | |
if self.time_position_encoding_before_transformer: | |
hidden_states = self.t_pos(hidden_states) | |
hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
# 2. Blocks | |
if self.caption_projection is not None: | |
batch_size = hidden_states.shape[0] | |
encoder_hidden_states = self.caption_projection(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) | |
if clip_encoder_hidden_states is not None and encoder_hidden_states is not None: | |
batch_size = hidden_states.shape[0] | |
clip_encoder_hidden_states = self.clip_projection(clip_encoder_hidden_states) | |
clip_encoder_hidden_states = clip_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, clip_encoder_hidden_states], dim = 1) | |
skips = [] | |
skip_index = 0 | |
for index, block in enumerate(self.transformer_blocks): | |
if self.enable_uvit: | |
if index >= 15: | |
long_connect = self.long_connect_fc[skip_index](skips.pop()) | |
hidden_states = hidden_states + long_connect | |
skip_index += 1 | |
if self.casual_3d_upsampler_index is not None and index in self.casual_3d_upsampler_index: | |
hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=video_length, h=height, w=width) | |
hidden_states = self.unpatch1d(hidden_states) | |
video_length = (video_length - 1) * 2 + 1 | |
hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c", f=video_length, h=height, w=width) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
args = { | |
"basic": [], | |
"motionmodule": [video_length, height, width], | |
"global_motionmodule": [video_length, height, width], | |
"selfattentiontemporal": [], | |
}[self.basic_block_type] | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
timestep, | |
cross_attention_kwargs, | |
class_labels, | |
*args, | |
**ckpt_kwargs, | |
) | |
else: | |
kwargs = { | |
"basic": {}, | |
"motionmodule": {"num_frames":video_length, "height":height, "width":width}, | |
"global_motionmodule": {"num_frames":video_length, "height":height, "width":width}, | |
"selfattentiontemporal": {}, | |
}[self.basic_block_type] | |
hidden_states = block( | |
hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
class_labels=class_labels, | |
**kwargs | |
) | |
if self.enable_uvit: | |
if index < 13: | |
skips.append(hidden_states) | |
if self.fake_3d and self.patch_3d: | |
hidden_states = rearrange(hidden_states, "b (f h w) c -> (b h w) c f", f=video_length, w=width, h=height) | |
hidden_states = self.unpatch1d(hidden_states) | |
hidden_states = rearrange(hidden_states, "(b h w) c f -> b (f h w) c", w=width, h=height) | |
# 3. Output | |
if self.config.norm_type != "ada_norm_single": | |
conditioning = self.transformer_blocks[0].norm1.emb( | |
timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] | |
hidden_states = self.proj_out_2(hidden_states) | |
elif self.config.norm_type == "ada_norm_single": | |
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) | |
# Modulation | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.squeeze(1) | |
# unpatchify | |
if self.adaln_single is None: | |
height = width = int(hidden_states.shape[1] ** 0.5) | |
if self.patch_3d: | |
if self.fake_3d: | |
hidden_states = hidden_states.reshape( | |
shape=(-1, video_length * self.patch_size, height, width, self.patch_size, self.patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states) | |
else: | |
hidden_states = hidden_states.reshape( | |
shape=(-1, video_length, height, width, self.time_patch_size, self.patch_size, self.patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nfhwopqc->ncfohpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(-1, self.out_channels, video_length * self.time_patch_size, height * self.patch_size, width * self.patch_size) | |
) | |
else: | |
hidden_states = hidden_states.reshape( | |
shape=(-1, video_length, height, width, self.patch_size, self.patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(-1, self.out_channels, video_length, height * self.patch_size, width * self.patch_size) | |
) | |
if not return_dict: | |
return (output,) | |
return Transformer3DModelOutput(sample=output) | |
def from_pretrained_2d( | |
cls, pretrained_model_path, subfolder=None, patch_size=2, transformer_additional_kwargs={}, | |
low_cpu_mem_usage=False, torch_dtype=torch.bfloat16 | |
): | |
if subfolder is not None: | |
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
config_file = os.path.join(pretrained_model_path, 'config.json') | |
if not os.path.isfile(config_file): | |
raise RuntimeError(f"{config_file} does not exist") | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
from diffusers.utils import WEIGHTS_NAME | |
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
if low_cpu_mem_usage: | |
try: | |
import re | |
from diffusers.models.modeling_utils import \ | |
load_model_dict_into_meta | |
from diffusers.utils import is_accelerate_available | |
if is_accelerate_available(): | |
import accelerate | |
# Instantiate model with empty weights | |
with accelerate.init_empty_weights(): | |
model = cls.from_config(config, **transformer_additional_kwargs) | |
param_device = "cpu" | |
from safetensors.torch import load_file, safe_open | |
state_dict = load_file(model_file_safetensors) | |
model._convert_deprecated_attention_blocks(state_dict) | |
# move the params from meta device to cpu | |
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
if len(missing_keys) > 0: | |
raise ValueError( | |
f"Cannot load {cls} from {pretrained_model_path} because the following keys are" | |
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
" those weights or else make sure your checkpoint file is correct." | |
) | |
unexpected_keys = load_model_dict_into_meta( | |
model, | |
state_dict, | |
device=param_device, | |
dtype=torch_dtype, | |
model_name_or_path=pretrained_model_path, | |
) | |
if cls._keys_to_ignore_on_load_unexpected is not None: | |
for pat in cls._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
print( | |
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
return model | |
except Exception as e: | |
print( | |
f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead." | |
) | |
model = cls.from_config(config, **transformer_additional_kwargs) | |
if os.path.exists(model_file): | |
state_dict = torch.load(model_file, map_location="cpu") | |
elif os.path.exists(model_file_safetensors): | |
from safetensors.torch import load_file, safe_open | |
state_dict = load_file(model_file_safetensors) | |
else: | |
from safetensors.torch import load_file, safe_open | |
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
state_dict = {} | |
for model_file_safetensors in model_files_safetensors: | |
_state_dict = load_file(model_file_safetensors) | |
for key in _state_dict: | |
state_dict[key] = _state_dict[key] | |
if model.state_dict()['pos_embed.proj.weight'].size() != state_dict['pos_embed.proj.weight'].size(): | |
new_shape = model.state_dict()['pos_embed.proj.weight'].size() | |
if len(new_shape) == 5: | |
state_dict['pos_embed.proj.weight'] = state_dict['pos_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone() | |
state_dict['pos_embed.proj.weight'][:, :, :-1] = 0 | |
else: | |
model.state_dict()['pos_embed.proj.weight'][:, :4, :, :] = state_dict['pos_embed.proj.weight'] | |
model.state_dict()['pos_embed.proj.weight'][:, 4:, :, :] = 0 | |
state_dict['pos_embed.proj.weight'] = model.state_dict()['pos_embed.proj.weight'] | |
if model.state_dict()['proj_out.weight'].size() != state_dict['proj_out.weight'].size(): | |
new_shape = model.state_dict()['proj_out.weight'].size() | |
state_dict['proj_out.weight'] = torch.tile(state_dict['proj_out.weight'], [patch_size, 1]) | |
if model.state_dict()['proj_out.bias'].size() != state_dict['proj_out.bias'].size(): | |
new_shape = model.state_dict()['proj_out.bias'].size() | |
state_dict['proj_out.bias'] = torch.tile(state_dict['proj_out.bias'], [patch_size]) | |
tmp_state_dict = {} | |
for key in state_dict: | |
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
tmp_state_dict[key] = state_dict[key] | |
else: | |
print(key, "Size don't match, skip") | |
state_dict = tmp_state_dict | |
m, u = model.load_state_dict(state_dict, strict=False) | |
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
params = [p.numel() if "attn_temporal." in n else 0 for n, p in model.named_parameters()] | |
print(f"### Attn temporal Parameters: {sum(params) / 1e6} M") | |
model = model.to(torch_dtype) | |
return model | |
class HunyuanTransformer3DModel(ModelMixin, ConfigMixin): | |
""" | |
HunYuanDiT: Diffusion model with a Transformer backbone. | |
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): | |
The number of channels in each head. | |
in_channels (`int`, *optional*): | |
The number of channels in the input and output (specify if the input is **continuous**). | |
patch_size (`int`, *optional*): | |
The size of the patch to use for the input. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): | |
Activation function to use in feed-forward. | |
sample_size (`int`, *optional*): | |
The width of the latent images. This is fixed during training since it is used to learn a number of | |
position embeddings. | |
dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): | |
The number of dimension in the clip text embedding. | |
hidden_size (`int`, *optional*): | |
The size of hidden layer in the conditioning embedding layers. | |
num_layers (`int`, *optional*, defaults to 1): | |
The number of layers of Transformer blocks to use. | |
mlp_ratio (`float`, *optional*, defaults to 4.0): | |
The ratio of the hidden layer size to the input size. | |
learn_sigma (`bool`, *optional*, defaults to `True`): | |
Whether to predict variance. | |
cross_attention_dim_t5 (`int`, *optional*): | |
The number dimensions in t5 text embedding. | |
pooled_projection_dim (`int`, *optional*): | |
The size of the pooled projection. | |
text_len (`int`, *optional*): | |
The length of the clip text embedding. | |
text_len_t5 (`int`, *optional*): | |
The length of the T5 text embedding. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
patch_size: Optional[int] = None, | |
n_query=16, | |
projection_dim=768, | |
activation_fn: str = "gelu-approximate", | |
sample_size=32, | |
hidden_size=1152, | |
num_layers: int = 28, | |
mlp_ratio: float = 4.0, | |
learn_sigma: bool = True, | |
cross_attention_dim: int = 1024, | |
norm_type: str = "layer_norm", | |
cross_attention_dim_t5: int = 2048, | |
pooled_projection_dim: int = 1024, | |
text_len: int = 77, | |
text_len_t5: int = 256, | |
# block type | |
basic_block_type: str = "basic", | |
time_position_encoding = False, | |
time_position_encoding_type: str = "2d_rope", | |
after_norm = False, | |
resize_inpaint_mask_directly: bool = False, | |
enable_clip_in_inpaint: bool = True, | |
position_of_clip_embedding: str = "full", | |
enable_text_attention_mask: bool = True, | |
add_noise_in_inpaint_model: bool = False, | |
): | |
super().__init__() | |
# 4. Define output layers | |
if learn_sigma: | |
self.out_channels = in_channels * 2 if out_channels is None else out_channels | |
else: | |
self.out_channels = in_channels if out_channels is None else out_channels | |
self.enable_inpaint = in_channels * 2 != self.out_channels if learn_sigma else in_channels != self.out_channels | |
self.num_heads = num_attention_heads | |
self.inner_dim = num_attention_heads * attention_head_dim | |
self.basic_block_type = basic_block_type | |
self.resize_inpaint_mask_directly = resize_inpaint_mask_directly | |
self.text_embedder = PixArtAlphaTextProjection( | |
in_features=cross_attention_dim_t5, | |
hidden_size=cross_attention_dim_t5 * 4, | |
out_features=cross_attention_dim, | |
act_fn="silu_fp32", | |
) | |
self.text_embedding_padding = nn.Parameter( | |
torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32) | |
) | |
self.pos_embed = PatchEmbed( | |
height=sample_size, | |
width=sample_size, | |
in_channels=in_channels, | |
embed_dim=hidden_size, | |
patch_size=patch_size, | |
pos_embed_type=None, | |
) | |
self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding( | |
hidden_size, | |
pooled_projection_dim=pooled_projection_dim, | |
seq_len=text_len_t5, | |
cross_attention_dim=cross_attention_dim_t5, | |
) | |
# 3. Define transformers blocks | |
if self.basic_block_type == "hybrid_attention": | |
self.blocks = nn.ModuleList( | |
[ | |
HunyuanDiTBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
activation_fn=activation_fn, | |
ff_inner_dim=int(self.inner_dim * mlp_ratio), | |
cross_attention_dim=cross_attention_dim, | |
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. | |
skip=layer > num_layers // 2, | |
after_norm=after_norm, | |
time_position_encoding=time_position_encoding, | |
is_local_attention=False if layer % 2 == 0 else True, | |
local_attention_frames=2, | |
enable_inpaint=self.enable_inpaint and enable_clip_in_inpaint, | |
) | |
for layer in range(num_layers) | |
] | |
) | |
elif self.basic_block_type == "kvcompression_basic": | |
self.blocks = nn.ModuleList( | |
[ | |
HunyuanDiTBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
activation_fn=activation_fn, | |
ff_inner_dim=int(self.inner_dim * mlp_ratio), | |
cross_attention_dim=cross_attention_dim, | |
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. | |
skip=layer > num_layers // 2, | |
after_norm=after_norm, | |
time_position_encoding=time_position_encoding, | |
kvcompression=False if layer < num_layers // 2 else True, | |
enable_inpaint=self.enable_inpaint and enable_clip_in_inpaint, | |
) | |
for layer in range(num_layers) | |
] | |
) | |
else: | |
self.blocks = nn.ModuleList( | |
[ | |
HunyuanDiTBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
activation_fn=activation_fn, | |
ff_inner_dim=int(self.inner_dim * mlp_ratio), | |
cross_attention_dim=cross_attention_dim, | |
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. | |
skip=layer > num_layers // 2, | |
after_norm=after_norm, | |
time_position_encoding=time_position_encoding, | |
enable_inpaint=self.enable_inpaint and enable_clip_in_inpaint, | |
) | |
for layer in range(num_layers) | |
] | |
) | |
self.n_query = n_query | |
if self.enable_inpaint and enable_clip_in_inpaint: | |
self.clip_padding = nn.Parameter( | |
torch.randn((self.n_query, cross_attention_dim)) * 0.02 | |
) | |
self.clip_projection = Resampler( | |
int(math.sqrt(n_query)), | |
embed_dim=cross_attention_dim, | |
num_heads=self.config.num_attention_heads, | |
kv_dim=projection_dim, | |
norm_layer=nn.LayerNorm, | |
) | |
else: | |
self.clip_padding = None | |
self.clip_projection = None | |
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states, | |
timestep, | |
encoder_hidden_states=None, | |
text_embedding_mask=None, | |
encoder_hidden_states_t5=None, | |
text_embedding_mask_t5=None, | |
image_meta_size=None, | |
style=None, | |
image_rotary_emb=None, | |
inpaint_latents=None, | |
control_latents: torch.Tensor = None, | |
clip_encoder_hidden_states: Optional[torch.Tensor]=None, | |
clip_attention_mask: Optional[torch.Tensor]=None, | |
added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
return_dict=True, | |
): | |
""" | |
The [`HunyuanDiT2DModel`] forward method. | |
Args: | |
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): | |
The input tensor. | |
timestep ( `torch.LongTensor`, *optional*): | |
Used to indicate denoising step. | |
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. This is the output of `BertModel`. | |
text_embedding_mask: torch.Tensor | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
of `BertModel`. | |
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. | |
text_embedding_mask_t5: torch.Tensor | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
of T5 Text Encoder. | |
image_meta_size (torch.Tensor): | |
Conditional embedding indicate the image sizes | |
style: torch.Tensor: | |
Conditional embedding indicate the style | |
image_rotary_emb (`torch.Tensor`): | |
The image rotary embeddings to apply on query and key tensors during attention calculation. | |
return_dict: bool | |
Whether to return a dictionary. | |
""" | |
if inpaint_latents is not None: | |
hidden_states = torch.concat([hidden_states, inpaint_latents], 1) | |
if control_latents is not None: | |
hidden_states = torch.concat([hidden_states, control_latents], 1) | |
# unpatchify: (N, out_channels, H, W) | |
patch_size = self.pos_embed.patch_size | |
video_length, height, width = hidden_states.shape[-3], hidden_states.shape[-2] // patch_size, hidden_states.shape[-1] // patch_size | |
hidden_states = rearrange(hidden_states, "b c f h w ->(b f) c h w") | |
hidden_states = self.pos_embed(hidden_states) | |
hidden_states = rearrange(hidden_states, "(b f) (h w) c -> b c f h w", f=video_length, h=height, w=width) | |
hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
temb = self.time_extra_emb( | |
timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype | |
) # [B, D] | |
# text projection | |
batch_size, sequence_length, _ = encoder_hidden_states_t5.shape | |
encoder_hidden_states_t5 = self.text_embedder( | |
encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1]) | |
) | |
encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1) | |
text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1) | |
text_embedding_mask = text_embedding_mask.unsqueeze(2).bool() | |
encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding) | |
if clip_encoder_hidden_states is not None: | |
batch_size = encoder_hidden_states.shape[0] | |
clip_encoder_hidden_states = self.clip_projection(clip_encoder_hidden_states) | |
clip_encoder_hidden_states = clip_encoder_hidden_states.view(batch_size, -1, encoder_hidden_states.shape[-1]) | |
clip_attention_mask = clip_attention_mask.unsqueeze(2).bool() | |
clip_encoder_hidden_states = torch.where(clip_attention_mask, clip_encoder_hidden_states, self.clip_padding) | |
skips = [] | |
for layer, block in enumerate(self.blocks): | |
if layer > self.config.num_layers // 2: | |
skip = skips.pop() | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
args = { | |
"kvcompression_basic": [video_length, height, width, clip_encoder_hidden_states], | |
"basic": [video_length, height, width, clip_encoder_hidden_states], | |
"hybrid_attention": [video_length, height, width, clip_encoder_hidden_states], | |
}[self.basic_block_type] | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
skip, | |
*args, | |
**ckpt_kwargs, | |
) | |
else: | |
kwargs = { | |
"kvcompression_basic": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
"basic": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
"hybrid_attention": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
}[self.basic_block_type] | |
hidden_states = block( | |
hidden_states, | |
temb=temb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
skip=skip, | |
**kwargs | |
) # (N, L, D) | |
else: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
args = { | |
"kvcompression_basic": [None, video_length, height, width, clip_encoder_hidden_states, True if layer==0 else False], | |
"basic": [None, video_length, height, width, clip_encoder_hidden_states, True if layer==0 else False], | |
"hybrid_attention": [None, video_length, height, width, clip_encoder_hidden_states, True if layer==0 else False], | |
}[self.basic_block_type] | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
*args, | |
**ckpt_kwargs, | |
) | |
else: | |
kwargs = { | |
"kvcompression_basic": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
"basic": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
"hybrid_attention": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
}[self.basic_block_type] | |
hidden_states = block( | |
hidden_states, | |
temb=temb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
disable_image_rotary_emb_in_attn1=True if layer==0 else False, | |
**kwargs | |
) # (N, L, D) | |
if layer < (self.config.num_layers // 2 - 1): | |
skips.append(hidden_states) | |
# final layer | |
hidden_states = self.norm_out(hidden_states, temb.to(torch.float32)) | |
hidden_states = self.proj_out(hidden_states) | |
# (N, L, patch_size ** 2 * out_channels) | |
hidden_states = hidden_states.reshape( | |
shape=(hidden_states.shape[0], video_length, height, width, patch_size, patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(hidden_states.shape[0], self.out_channels, video_length, height * patch_size, width * patch_size) | |
) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
def from_pretrained_2d( | |
cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}, | |
low_cpu_mem_usage=False, torch_dtype=torch.bfloat16 | |
): | |
if subfolder is not None: | |
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
config_file = os.path.join(pretrained_model_path, 'config.json') | |
if not os.path.isfile(config_file): | |
raise RuntimeError(f"{config_file} does not exist") | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
from diffusers.utils import WEIGHTS_NAME | |
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
if low_cpu_mem_usage: | |
try: | |
import re | |
from diffusers.models.modeling_utils import \ | |
load_model_dict_into_meta | |
from diffusers.utils import is_accelerate_available | |
if is_accelerate_available(): | |
import accelerate | |
# Instantiate model with empty weights | |
with accelerate.init_empty_weights(): | |
model = cls.from_config(config, **transformer_additional_kwargs) | |
param_device = "cpu" | |
from safetensors.torch import load_file, safe_open | |
state_dict = load_file(model_file_safetensors) | |
model._convert_deprecated_attention_blocks(state_dict) | |
# move the params from meta device to cpu | |
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
if len(missing_keys) > 0: | |
raise ValueError( | |
f"Cannot load {cls} from {pretrained_model_path} because the following keys are" | |
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
" those weights or else make sure your checkpoint file is correct." | |
) | |
unexpected_keys = load_model_dict_into_meta( | |
model, | |
state_dict, | |
device=param_device, | |
dtype=torch_dtype, | |
model_name_or_path=pretrained_model_path, | |
) | |
if cls._keys_to_ignore_on_load_unexpected is not None: | |
for pat in cls._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
print( | |
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
return model | |
except Exception as e: | |
print( | |
f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead." | |
) | |
model = cls.from_config(config, **transformer_additional_kwargs) | |
if os.path.exists(model_file): | |
state_dict = torch.load(model_file, map_location="cpu") | |
elif os.path.exists(model_file_safetensors): | |
from safetensors.torch import load_file, safe_open | |
state_dict = load_file(model_file_safetensors) | |
else: | |
from safetensors.torch import load_file, safe_open | |
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
state_dict = {} | |
for model_file_safetensors in model_files_safetensors: | |
_state_dict = load_file(model_file_safetensors) | |
for key in _state_dict: | |
state_dict[key] = _state_dict[key] | |
if model.state_dict()['pos_embed.proj.weight'].size() != state_dict['pos_embed.proj.weight'].size(): | |
new_shape = model.state_dict()['pos_embed.proj.weight'].size() | |
if len(new_shape) == 5: | |
state_dict['pos_embed.proj.weight'] = state_dict['pos_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone() | |
state_dict['pos_embed.proj.weight'][:, :, :-1] = 0 | |
else: | |
if model.state_dict()['pos_embed.proj.weight'].size()[1] > state_dict['pos_embed.proj.weight'].size()[1]: | |
model.state_dict()['pos_embed.proj.weight'][:, :state_dict['pos_embed.proj.weight'].size()[1], :, :] = state_dict['pos_embed.proj.weight'] | |
model.state_dict()['pos_embed.proj.weight'][:, state_dict['pos_embed.proj.weight'].size()[1]:, :, :] = 0 | |
state_dict['pos_embed.proj.weight'] = model.state_dict()['pos_embed.proj.weight'] | |
else: | |
model.state_dict()['pos_embed.proj.weight'][:, :, :, :] = state_dict['pos_embed.proj.weight'][:, :model.state_dict()['pos_embed.proj.weight'].size()[1], :, :] | |
state_dict['pos_embed.proj.weight'] = model.state_dict()['pos_embed.proj.weight'] | |
if model.state_dict()['proj_out.weight'].size() != state_dict['proj_out.weight'].size(): | |
if model.state_dict()['proj_out.weight'].size()[0] > state_dict['proj_out.weight'].size()[0]: | |
model.state_dict()['proj_out.weight'][:state_dict['proj_out.weight'].size()[0], :] = state_dict['proj_out.weight'] | |
state_dict['proj_out.weight'] = model.state_dict()['proj_out.weight'] | |
else: | |
model.state_dict()['proj_out.weight'][:, :] = state_dict['proj_out.weight'][:model.state_dict()['proj_out.weight'].size()[0], :] | |
state_dict['proj_out.weight'] = model.state_dict()['proj_out.weight'] | |
if model.state_dict()['proj_out.bias'].size() != state_dict['proj_out.bias'].size(): | |
if model.state_dict()['proj_out.bias'].size()[0] > state_dict['proj_out.bias'].size()[0]: | |
model.state_dict()['proj_out.bias'][:state_dict['proj_out.bias'].size()[0]] = state_dict['proj_out.bias'] | |
state_dict['proj_out.bias'] = model.state_dict()['proj_out.bias'] | |
else: | |
model.state_dict()['proj_out.bias'][:, :] = state_dict['proj_out.bias'][:model.state_dict()['proj_out.bias'].size()[0], :] | |
state_dict['proj_out.bias'] = model.state_dict()['proj_out.bias'] | |
tmp_state_dict = {} | |
for key in state_dict: | |
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
tmp_state_dict[key] = state_dict[key] | |
else: | |
print(key, "Size don't match, skip") | |
state_dict = tmp_state_dict | |
m, u = model.load_state_dict(state_dict, strict=False) | |
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
print(m) | |
params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()] | |
print(f"### Mamba Parameters: {sum(params) / 1e6} M") | |
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] | |
print(f"### attn1 Parameters: {sum(params) / 1e6} M") | |
model = model.to(torch_dtype) | |
return model | |
class EasyAnimateTransformer3DModel(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 30, | |
attention_head_dim: int = 64, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
patch_size: Optional[int] = None, | |
sample_width: int = 90, | |
sample_height: int = 60, | |
ref_channels: int = None, | |
clip_channels: int = None, | |
activation_fn: str = "gelu-approximate", | |
timestep_activation_fn: str = "silu", | |
freq_shift: int = 0, | |
num_layers: int = 30, | |
mmdit_layers: int = 10000, | |
swa_layers: list = None, | |
dropout: float = 0.0, | |
time_embed_dim: int = 512, | |
add_norm_text_encoder: bool = False, | |
text_embed_dim: int = 4096, | |
text_embed_dim_t5: int = 4096, | |
norm_eps: float = 1e-5, | |
norm_elementwise_affine: bool = True, | |
flip_sin_to_cos: bool = True, | |
time_position_encoding_type: str = "3d_rope", | |
after_norm = False, | |
resize_inpaint_mask_directly: bool = False, | |
enable_clip_in_inpaint: bool = True, | |
position_of_clip_embedding: str = "full", | |
enable_text_attention_mask: bool = True, | |
add_noise_in_inpaint_model: bool = False, | |
add_ref_latent_in_control_model: bool = False, | |
): | |
super().__init__() | |
self.num_heads = num_attention_heads | |
self.inner_dim = num_attention_heads * attention_head_dim | |
self.resize_inpaint_mask_directly = resize_inpaint_mask_directly | |
self.patch_size = patch_size | |
post_patch_height = sample_height // patch_size | |
post_patch_width = sample_width // patch_size | |
self.post_patch_height = post_patch_height | |
self.post_patch_width = post_patch_width | |
self.time_proj = Timesteps(self.inner_dim, flip_sin_to_cos, freq_shift) | |
self.time_embedding = TimestepEmbedding(self.inner_dim, time_embed_dim, timestep_activation_fn) | |
self.proj = nn.Conv2d( | |
in_channels, self.inner_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=True | |
) | |
if not add_norm_text_encoder: | |
self.text_proj = nn.Linear(text_embed_dim, self.inner_dim) | |
if text_embed_dim_t5 is not None: | |
self.text_proj_t5 = nn.Linear(text_embed_dim_t5, self.inner_dim) | |
else: | |
self.text_proj = nn.Sequential( | |
EasyAnimateRMSNorm(text_embed_dim), | |
nn.Linear(text_embed_dim, self.inner_dim) | |
) | |
if text_embed_dim_t5 is not None: | |
self.text_proj_t5 = nn.Sequential( | |
EasyAnimateRMSNorm(text_embed_dim), | |
nn.Linear(text_embed_dim_t5, self.inner_dim) | |
) | |
if ref_channels is not None: | |
self.ref_proj = nn.Conv2d( | |
ref_channels, self.inner_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=True | |
) | |
ref_pos_embedding = get_2d_sincos_pos_embed(self.inner_dim, (post_patch_height, post_patch_width)) | |
ref_pos_embedding = torch.from_numpy(ref_pos_embedding) | |
self.register_buffer("ref_pos_embedding", ref_pos_embedding, persistent=False) | |
if clip_channels is not None: | |
self.clip_proj = nn.Linear(clip_channels, self.inner_dim) | |
self.swa_layers = swa_layers | |
if swa_layers is not None: | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
EasyAnimateDiTBlock( | |
dim=self.inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
after_norm=after_norm, | |
is_mmdit_block=True if index < mmdit_layers else False, | |
is_swa=True if index in swa_layers else False, | |
) | |
for index in range(num_layers) | |
] | |
) | |
else: | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
EasyAnimateDiTBlock( | |
dim=self.inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
after_norm=after_norm, | |
is_mmdit_block=True if _ < mmdit_layers else False, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.norm_final = nn.LayerNorm(self.inner_dim, norm_eps, norm_elementwise_affine) | |
# 5. Output blocks | |
self.norm_out = AdaLayerNorm( | |
embedding_dim=time_embed_dim, | |
output_dim=2 * self.inner_dim, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
chunk_dim=1, | |
) | |
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * out_channels) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states, | |
timestep, | |
timestep_cond = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
text_embedding_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states_t5: Optional[torch.Tensor] = None, | |
text_embedding_mask_t5: Optional[torch.Tensor] = None, | |
image_meta_size = None, | |
style = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
inpaint_latents: Optional[torch.Tensor] = None, | |
control_latents: Optional[torch.Tensor] = None, | |
ref_latents: Optional[torch.Tensor] = None, | |
clip_encoder_hidden_states: Optional[torch.Tensor] = None, | |
clip_attention_mask: Optional[torch.Tensor] = None, | |
added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
return_dict=True, | |
): | |
batch_size, channels, video_length, height, width = hidden_states.size() | |
# 1. Time embedding | |
temb = self.time_proj(timestep).to(dtype=hidden_states.dtype) | |
temb = self.time_embedding(temb, timestep_cond) | |
# 2. Patch embedding | |
if inpaint_latents is not None: | |
hidden_states = torch.concat([hidden_states, inpaint_latents], 1) | |
if control_latents is not None: | |
hidden_states = torch.concat([hidden_states, control_latents], 1) | |
hidden_states = rearrange(hidden_states, "b c f h w ->(b f) c h w") | |
hidden_states = self.proj(hidden_states) | |
hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=video_length, h=height // self.patch_size, w=width // self.patch_size) | |
hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
encoder_hidden_states = self.text_proj(encoder_hidden_states) | |
if encoder_hidden_states_t5 is not None: | |
encoder_hidden_states_t5 = self.text_proj_t5(encoder_hidden_states_t5) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1).contiguous() | |
if ref_latents is not None: | |
ref_batch, ref_channels, ref_video_length, ref_height, ref_width = ref_latents.shape | |
ref_latents = rearrange(ref_latents, "b c f h w ->(b f) c h w") | |
ref_latents = self.ref_proj(ref_latents) | |
ref_latents = rearrange(ref_latents, "(b f) c h w -> b c f h w", f=ref_video_length, h=ref_height // self.patch_size, w=ref_width // self.patch_size) | |
ref_latents = ref_latents.flatten(2).transpose(1, 2) | |
emb_size = hidden_states.size()[-1] | |
ref_pos_embedding = self.ref_pos_embedding | |
ref_pos_embedding_interpolate = ref_pos_embedding.view(1, 1, self.post_patch_height, self.post_patch_width, emb_size).permute([0, 4, 1, 2, 3]) | |
ref_pos_embedding_interpolate = F.interpolate( | |
ref_pos_embedding_interpolate, | |
size=[1, height // self.config.patch_size, width // self.config.patch_size], | |
mode='trilinear', align_corners=False | |
) | |
ref_pos_embedding_interpolate = ref_pos_embedding_interpolate.permute([0, 2, 3, 4, 1]).view(1, -1, emb_size) | |
ref_latents = ref_latents + ref_pos_embedding_interpolate | |
encoder_hidden_states = ref_latents | |
if clip_encoder_hidden_states is not None: | |
clip_encoder_hidden_states = self.clip_proj(clip_encoder_hidden_states) | |
encoder_hidden_states = torch.concat([clip_encoder_hidden_states, ref_latents], dim=1) | |
# 4. Transformer blocks | |
for i, block in enumerate(self.transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
video_length, | |
height // self.patch_size, | |
width // self.patch_size, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states, encoder_hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
num_frames=video_length, | |
height=height // self.patch_size, | |
width=width // self.patch_size | |
) | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
hidden_states = self.norm_final(hidden_states) | |
hidden_states = hidden_states[:, encoder_hidden_states.size()[1]:] | |
# 5. Final block | |
hidden_states = self.norm_out(hidden_states, temb=temb) | |
hidden_states = self.proj_out(hidden_states) | |
# 6. Unpatchify | |
p = self.config.patch_size | |
output = hidden_states.reshape(batch_size, video_length, height // p, width // p, channels, p, p) | |
output = output.permute(0, 4, 1, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
def from_pretrained_2d( | |
cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}, | |
low_cpu_mem_usage=False, torch_dtype=torch.bfloat16 | |
): | |
if subfolder is not None: | |
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
config_file = os.path.join(pretrained_model_path, 'config.json') | |
if not os.path.isfile(config_file): | |
raise RuntimeError(f"{config_file} does not exist") | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
from diffusers.utils import WEIGHTS_NAME | |
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
if low_cpu_mem_usage: | |
try: | |
import re | |
from diffusers.models.modeling_utils import \ | |
load_model_dict_into_meta | |
from diffusers.utils import is_accelerate_available | |
if is_accelerate_available(): | |
import accelerate | |
# Instantiate model with empty weights | |
with accelerate.init_empty_weights(): | |
model = cls.from_config(config, **transformer_additional_kwargs) | |
param_device = "cpu" | |
from safetensors.torch import load_file, safe_open | |
state_dict = load_file(model_file_safetensors) | |
model._convert_deprecated_attention_blocks(state_dict) | |
# move the params from meta device to cpu | |
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
if len(missing_keys) > 0: | |
raise ValueError( | |
f"Cannot load {cls} from {pretrained_model_path} because the following keys are" | |
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
" those weights or else make sure your checkpoint file is correct." | |
) | |
unexpected_keys = load_model_dict_into_meta( | |
model, | |
state_dict, | |
device=param_device, | |
dtype=torch_dtype, | |
model_name_or_path=pretrained_model_path, | |
) | |
if cls._keys_to_ignore_on_load_unexpected is not None: | |
for pat in cls._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
print( | |
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
return model | |
except Exception as e: | |
print( | |
f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead." | |
) | |
model = cls.from_config(config, **transformer_additional_kwargs) | |
if os.path.exists(model_file): | |
state_dict = torch.load(model_file, map_location="cpu") | |
elif os.path.exists(model_file_safetensors): | |
from safetensors.torch import load_file, safe_open | |
state_dict = load_file(model_file_safetensors) | |
else: | |
from safetensors.torch import load_file, safe_open | |
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
state_dict = {} | |
for model_file_safetensors in model_files_safetensors: | |
_state_dict = load_file(model_file_safetensors) | |
for key in _state_dict: | |
state_dict[key] = _state_dict[key] | |
if model.state_dict()['proj.weight'].size() != state_dict['proj.weight'].size(): | |
new_shape = model.state_dict()['proj.weight'].size() | |
if len(new_shape) == 5: | |
state_dict['proj.weight'] = state_dict['proj.weight'].unsqueeze(2).expand(new_shape).clone() | |
state_dict['proj.weight'][:, :, :-1] = 0 | |
else: | |
if model.state_dict()['proj.weight'].size()[1] > state_dict['proj.weight'].size()[1]: | |
model.state_dict()['proj.weight'][:, :state_dict['proj.weight'].size()[1], :, :] = state_dict['proj.weight'] | |
model.state_dict()['proj.weight'][:, state_dict['proj.weight'].size()[1]:, :, :] = 0 | |
state_dict['proj.weight'] = model.state_dict()['proj.weight'] | |
else: | |
model.state_dict()['proj.weight'][:, :, :, :] = state_dict['proj.weight'][:, :model.state_dict()['proj.weight'].size()[1], :, :] | |
state_dict['proj.weight'] = model.state_dict()['proj.weight'] | |
tmp_state_dict = {} | |
for key in state_dict: | |
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
tmp_state_dict[key] = state_dict[key] | |
else: | |
print(key, "Size don't match, skip") | |
state_dict = tmp_state_dict | |
m, u = model.load_state_dict(state_dict, strict=False) | |
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
print(m) | |
params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()] | |
print(f"### All Parameters: {sum(params) / 1e6} M") | |
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] | |
print(f"### attn1 Parameters: {sum(params) / 1e6} M") | |
model = model.to(torch_dtype) | |
return model |