# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders.single_file_model import FromOriginalModelMixin from diffusers.models.autoencoders.vae import (DecoderOutput, DiagonalGaussianDistribution) from diffusers.models.modeling_outputs import AutoencoderKLOutput from diffusers.models.modeling_utils import ModelMixin from diffusers.utils import logging from diffusers.utils.accelerate_utils import apply_forward_hook try: from diffusers.loaders import FromOriginalVAEMixin except: from diffusers.loaders import FromOriginalModelMixin as FromOriginalVAEMixin from diffusers.models.attention_processor import ( ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, Attention, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor) from diffusers.models.autoencoders.vae import (DecoderOutput, DiagonalGaussianDistribution) from diffusers.models.modeling_outputs import AutoencoderKLOutput from diffusers.models.modeling_utils import ModelMixin from diffusers.utils.accelerate_utils import apply_forward_hook from torch import nn from diffusers import AutoencoderKL from ..vae.ldm.models.cogvideox_enc_dec import (CogVideoXCausalConv3d, CogVideoXDecoder3D, CogVideoXEncoder3D, CogVideoXSafeConv3d) from ..vae.ldm.models.omnigen_enc_dec import Decoder as omnigen_Mag_Decoder from ..vae.ldm.models.omnigen_enc_dec import Encoder as omnigen_Mag_Encoder logger = logging.get_logger(__name__) # pylint: disable=invalid-name def str_eval(item): if type(item) == str: return eval(item) else: return item class AutoencoderKLMagvit(ModelMixin, ConfigMixin, FromOriginalVAEMixin): r""" A VAE model with KL loss for encoding images into latents and decoding latent representations into images. This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): Tuple of downsample block types. up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): Tuple of upsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): Tuple of block output channels. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. sample_size (`int`, *optional*, defaults to `32`): Sample input size. scaling_factor (`float`, *optional*, defaults to 0.18215): The component-wise standard deviation of the trained latent space computed using the first batch of the training set. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. force_upcast (`bool`, *optional*, default to `True`): If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE can be fine-tuned / trained to a lower range without loosing too much precision in which case `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, ch = 128, ch_mult = [ 1,2,4,4 ], use_gc_blocks = None, down_block_types: tuple = None, up_block_types: tuple = None, mid_block_type: str = "MidBlock3D", mid_block_use_attention: bool = True, mid_block_attention_type: str = "3d", mid_block_num_attention_heads: int = 1, layers_per_block: int = 2, act_fn: str = "silu", num_attention_heads: int = 1, latent_channels: int = 4, norm_num_groups: int = 32, scaling_factor: float = 0.1825, slice_mag_vae=True, slice_compression_vae=False, cache_compression_vae=False, cache_mag_vae=False, use_tiling=False, use_tiling_encoder=False, use_tiling_decoder=False, mini_batch_encoder=9, mini_batch_decoder=3, upcast_vae=False, spatial_group_norm=False, tile_sample_min_size=384, tile_overlap_factor=0.25, ): super().__init__() down_block_types = str_eval(down_block_types) up_block_types = str_eval(up_block_types) self.encoder = omnigen_Mag_Encoder( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, ch = ch, ch_mult = ch_mult, use_gc_blocks=use_gc_blocks, mid_block_type=mid_block_type, mid_block_use_attention=mid_block_use_attention, mid_block_attention_type=mid_block_attention_type, mid_block_num_attention_heads=mid_block_num_attention_heads, layers_per_block=layers_per_block, norm_num_groups=norm_num_groups, act_fn=act_fn, num_attention_heads=num_attention_heads, double_z=True, slice_mag_vae=slice_mag_vae, slice_compression_vae=slice_compression_vae, cache_compression_vae=cache_compression_vae, cache_mag_vae=cache_mag_vae, mini_batch_encoder=mini_batch_encoder, spatial_group_norm=spatial_group_norm, ) self.decoder = omnigen_Mag_Decoder( in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, ch = ch, ch_mult = ch_mult, use_gc_blocks=use_gc_blocks, mid_block_type=mid_block_type, mid_block_use_attention=mid_block_use_attention, mid_block_attention_type=mid_block_attention_type, mid_block_num_attention_heads=mid_block_num_attention_heads, layers_per_block=layers_per_block, norm_num_groups=norm_num_groups, act_fn=act_fn, num_attention_heads=num_attention_heads, slice_mag_vae=slice_mag_vae, slice_compression_vae=slice_compression_vae, cache_compression_vae=cache_compression_vae, cache_mag_vae=cache_mag_vae, mini_batch_decoder=mini_batch_decoder, spatial_group_norm=spatial_group_norm, ) self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1) self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1) self.slice_mag_vae = slice_mag_vae self.slice_compression_vae = slice_compression_vae self.cache_compression_vae = cache_compression_vae self.cache_mag_vae = cache_mag_vae self.mini_batch_encoder = mini_batch_encoder self.mini_batch_decoder = mini_batch_decoder self.use_slicing = False self.use_tiling = use_tiling self.use_tiling_encoder = use_tiling_encoder self.use_tiling_decoder = use_tiling_decoder self.upcast_vae = upcast_vae self.tile_sample_min_size = tile_sample_min_size self.tile_overlap_factor = tile_overlap_factor self.tile_latent_min_size = int(self.tile_sample_min_size / (2 ** (len(ch_mult) - 1))) self.scaling_factor = scaling_factor def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (omnigen_Mag_Encoder, omnigen_Mag_Decoder)): module.gradient_checkpointing = value @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) @apply_forward_hook def encode( self, x: torch.FloatTensor, return_dict: bool = True ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: """ Encode a batch of images into latents. Args: x (`torch.FloatTensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded images. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.upcast_vae: x = x.float() self.encoder = self.encoder.float() self.quant_conv = self.quant_conv.float() if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): x = self.tiled_encode(x, return_dict=return_dict) return x if self.use_tiling_encoder and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): x = self.tiled_encode(x, return_dict=return_dict) return x if self.use_slicing and x.shape[0] > 1: encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] h = torch.cat(encoded_slices) else: h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: if self.upcast_vae: z = z.float() self.decoder = self.decoder.float() self.post_quant_conv = self.post_quant_conv.float() if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(z, return_dict=return_dict) if self.use_tiling_decoder and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(z, return_dict=return_dict) z = self.post_quant_conv(z) dec = self.decoder(z) if not return_dict: return (dec,) return DecoderOutput(sample=dec) @apply_forward_hook def decode( self, z: torch.FloatTensor, return_dict: bool = True, generator=None ) -> Union[DecoderOutput, torch.FloatTensor]: """ Decode a batch of images. Args: z (`torch.FloatTensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and z.shape[0] > 1: decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] decoded = torch.cat(decoded_slices) else: decoded = self._decode(z).sample if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def blend_v( self, a: torch.Tensor, b: torch.Tensor, blend_extent: int ) -> torch.Tensor: blend_extent = min(a.shape[3], b.shape[3], blend_extent) for y in range(blend_extent): b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * ( 1 - y / blend_extent ) + b[:, :, :, y, :] * (y / blend_extent) return b def blend_h( self, a: torch.Tensor, b: torch.Tensor, blend_extent: int ) -> torch.Tensor: blend_extent = min(a.shape[4], b.shape[4], blend_extent) for x in range(blend_extent): b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * ( 1 - x / blend_extent ) + b[:, :, :, :, x] * (x / blend_extent) return b def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) row_limit = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. rows = [] for i in range(0, x.shape[3], overlap_size): row = [] for j in range(0, x.shape[4], overlap_size): tile = x[ :, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size, ] tile = self.encoder(tile) tile = self.quant_conv(tile) row.append(tile) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=4)) moments = torch.cat(result_rows, dim=3) posterior = DiagonalGaussianDistribution(moments) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) row_limit = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, z.shape[3], overlap_size): row = [] for j in range(0, z.shape[4], overlap_size): tile = z[ :, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size, ] tile = self.post_quant_conv(tile) decoded = self.decoder(tile) row.append(decoded) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=4)) dec = torch.cat(result_rows, dim=3) # Handle the lower right corner tile separately lower_right_original = z[ :, :, :, -self.tile_latent_min_size:, -self.tile_latent_min_size: ] quantized_lower_right = self.decoder(self.post_quant_conv(lower_right_original)) # Combine H, W = quantized_lower_right.size(-2), quantized_lower_right.size(-1) x_weights = torch.linspace(0, 1, W).unsqueeze(0).repeat(H, 1) y_weights = torch.linspace(0, 1, H).unsqueeze(1).repeat(1, W) weights = torch.min(x_weights, y_weights) if len(dec.size()) == 4: weights = weights.unsqueeze(0).unsqueeze(0) elif len(dec.size()) == 5: weights = weights.unsqueeze(0).unsqueeze(0).unsqueeze(0) weights = weights.to(dec.device) quantized_area = dec[:, :, :, -H:, -W:] combined = weights * quantized_lower_right + (1 - weights) * quantized_area dec[:, :, :, -H:, -W:] = combined if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward( self, sample: torch.FloatTensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, ) -> Union[DecoderOutput, torch.FloatTensor]: r""" Args: sample (`torch.FloatTensor`): Input sample. sample_posterior (`bool`, *optional*, defaults to `False`): Whether to sample from the posterior. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. """ x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z).sample if not return_dict: return (dec,) return DecoderOutput(sample=dec) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. This API is 🧪 experimental. """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. This API is 🧪 experimental. """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) @classmethod def from_pretrained(cls, pretrained_model_path, subfolder=None, **vae_additional_kwargs): import json import os if subfolder is not None: pretrained_model_path = os.path.join(pretrained_model_path, subfolder) config_file = os.path.join(pretrained_model_path, 'config.json') if not os.path.isfile(config_file): raise RuntimeError(f"{config_file} does not exist") with open(config_file, "r") as f: config = json.load(f) model = cls.from_config(config, **vae_additional_kwargs) from diffusers.utils import WEIGHTS_NAME model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) model_file_safetensors = model_file.replace(".bin", ".safetensors") if os.path.exists(model_file_safetensors): from safetensors.torch import load_file, safe_open state_dict = load_file(model_file_safetensors) else: if not os.path.isfile(model_file): raise RuntimeError(f"{model_file} does not exist") state_dict = torch.load(model_file, map_location="cpu") m, u = model.load_state_dict(state_dict, strict=False) print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") print(m, u) return model # Modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin): r""" A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in [CogVideoX](https://github.com/THUDM/CogVideo). This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): Tuple of downsample block types. up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): Tuple of upsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): Tuple of block output channels. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. sample_size (`int`, *optional*, defaults to `32`): Sample input size. scaling_factor (`float`, *optional*, defaults to `1.15258426`): The component-wise standard deviation of the trained latent space computed using the first batch of the training set. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. force_upcast (`bool`, *optional*, default to `True`): If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE can be fine-tuned / trained to a lower range without loosing too much precision in which case `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix """ _supports_gradient_checkpointing = True _no_split_modules = ["CogVideoXResnetBlock3D"] @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ( "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", ), up_block_types: Tuple[str] = ( "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", ), block_out_channels: Tuple[int] = (128, 256, 256, 512), latent_channels: int = 16, layers_per_block: int = 3, act_fn: str = "silu", norm_eps: float = 1e-6, norm_num_groups: int = 32, temporal_compression_ratio: float = 4, sample_height: int = 480, sample_width: int = 720, scaling_factor: float = 1.15258426, shift_factor: Optional[float] = None, latents_mean: Optional[Tuple[float]] = None, latents_std: Optional[Tuple[float]] = None, force_upcast: float = True, use_quant_conv: bool = False, use_post_quant_conv: bool = False, slice_mag_vae=False, slice_compression_vae=False, cache_compression_vae=False, cache_mag_vae=True, use_tiling=False, mini_batch_encoder=4, mini_batch_decoder=1, ): super().__init__() self.encoder = CogVideoXEncoder3D( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_eps=norm_eps, norm_num_groups=norm_num_groups, temporal_compression_ratio=temporal_compression_ratio, ) self.decoder = CogVideoXDecoder3D( in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_eps=norm_eps, norm_num_groups=norm_num_groups, temporal_compression_ratio=temporal_compression_ratio, ) self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None self.use_slicing = False self.use_tiling = use_tiling # Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not # recommended because the temporal parts of the VAE, here, are tricky to understand. # If you decode X latent frames together, the number of output frames is: # (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames # # Example with num_latent_frames_batch_size = 2: # - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together # => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) # => 6 * 8 = 48 frames # - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together # => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) + # ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) # => 1 * 9 + 5 * 8 = 49 frames # It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that # setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different # number of temporal frames. self.num_latent_frames_batch_size = 2 # We make the minimum height and width of sample for tiling half that of the generally supported self.tile_sample_min_height = sample_height // 2 self.tile_sample_min_width = sample_width // 2 self.tile_latent_min_height = int( self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) ) self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) # These are experimental overlap factors that were chosen based on experimentation and seem to work best for # 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX # and so the tiling implementation has only been tested on those specific resolutions. self.tile_overlap_factor_height = 1 / 6 self.tile_overlap_factor_width = 1 / 5 def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)): module.gradient_checkpointing = value def _clear_fake_context_parallel_cache(self): for name, module in self.named_modules(): if isinstance(module, CogVideoXCausalConv3d): logger.debug(f"Clearing fake Context Parallel cache for layer: {name}") module._clear_fake_context_parallel_cache() def enable_tiling( self, tile_sample_min_height: Optional[int] = None, tile_sample_min_width: Optional[int] = None, tile_overlap_factor_height: Optional[float] = None, tile_overlap_factor_width: Optional[float] = None, ) -> None: r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. Args: tile_sample_min_height (`int`, *optional*): The minimum height required for a sample to be separated into tiles across the height dimension. tile_sample_min_width (`int`, *optional*): The minimum width required for a sample to be separated into tiles across the width dimension. tile_overlap_factor_height (`int`, *optional*): The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher value might cause more tiles to be processed leading to slow down of the decoding process. tile_overlap_factor_width (`int`, *optional*): The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher value might cause more tiles to be processed leading to slow down of the decoding process. """ self.use_tiling = True self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width self.tile_latent_min_height = int( self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) ) self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width def disable_tiling(self) -> None: r""" Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.use_tiling = False def enable_slicing(self) -> None: r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.use_slicing = True def disable_slicing(self) -> None: r""" Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.use_slicing = False @apply_forward_hook def encode( self, x: torch.Tensor, return_dict: bool = True ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: """ Encode a batch of images into latents. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded images. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ batch_size, num_channels, num_frames, height, width = x.shape if num_frames == 1: h = self.encoder(x) if self.quant_conv is not None: h = self.quant_conv(h) posterior = DiagonalGaussianDistribution(h) else: frame_batch_size = 4 h = [] for i in range(num_frames // frame_batch_size): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) end_frame = frame_batch_size * (i + 1) + remaining_frames z_intermediate = x[:, :, start_frame:end_frame] z_intermediate = self.encoder(z_intermediate) if self.quant_conv is not None: z_intermediate = self.quant_conv(z_intermediate) h.append(z_intermediate) self._clear_fake_context_parallel_cache() h = torch.cat(h, dim=2) posterior = DiagonalGaussianDistribution(h) self._clear_fake_context_parallel_cache() if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: batch_size, num_channels, num_frames, height, width = z.shape if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height): return self.tiled_decode(z, return_dict=return_dict) if num_frames == 1: dec = [] z_intermediate = z if self.post_quant_conv is not None: z_intermediate = self.post_quant_conv(z_intermediate) z_intermediate = self.decoder(z_intermediate) dec.append(z_intermediate) else: frame_batch_size = self.num_latent_frames_batch_size dec = [] for i in range(num_frames // frame_batch_size): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) end_frame = frame_batch_size * (i + 1) + remaining_frames z_intermediate = z[:, :, start_frame:end_frame] if self.post_quant_conv is not None: z_intermediate = self.post_quant_conv(z_intermediate) z_intermediate = self.decoder(z_intermediate) dec.append(z_intermediate) self._clear_fake_context_parallel_cache() dec = torch.cat(dec, dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=dec) @apply_forward_hook def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: """ Decode a batch of images. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and z.shape[0] > 1: decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] decoded = torch.cat(decoded_slices) else: decoded = self._decode(z).sample if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[3], b.shape[3], blend_extent) for y in range(blend_extent): b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( y / blend_extent ) return b def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[4], b.shape[4], blend_extent) for x in range(blend_extent): b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( x / blend_extent ) return b def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: r""" Decode a batch of images using a tiled decoder. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ # Rough memory assessment: # - In CogVideoX-2B, there are a total of 24 CausalConv3d layers. # - The biggest intermediate dimensions are: [1, 128, 9, 480, 720]. # - Assume fp16 (2 bytes per value). # Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB # # Memory assessment when using tiling: # - Assume everything as above but now HxW is 240x360 by tiling in half # Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB batch_size, num_channels, num_frames, height, width = z.shape overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height)) overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width)) blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height) blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width) row_limit_height = self.tile_sample_min_height - blend_extent_height row_limit_width = self.tile_sample_min_width - blend_extent_width frame_batch_size = self.num_latent_frames_batch_size # Split z into overlapping tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, height, overlap_height): row = [] for j in range(0, width, overlap_width): time = [] for k in range(num_frames // frame_batch_size): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) end_frame = frame_batch_size * (k + 1) + remaining_frames tile = z[ :, :, start_frame:end_frame, i : i + self.tile_latent_min_height, j : j + self.tile_latent_min_width, ] if self.post_quant_conv is not None: tile = self.post_quant_conv(tile) tile = self.decoder(tile) time.append(tile) self._clear_fake_context_parallel_cache() row.append(torch.cat(time, dim=2)) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent_width) result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) result_rows.append(torch.cat(result_row, dim=4)) dec = torch.cat(result_rows, dim=3) if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward( self, sample: torch.Tensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, ) -> Union[torch.Tensor, torch.Tensor]: x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z) if not return_dict: return (dec,) return dec