File size: 5,982 Bytes
8e8cd3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn as nn
import torch.nn.functional as F



class Visual_encoder(nn.Module):
    def __init__(self, args):
        super(Visual_encoder, self).__init__()
        self.args = args

        # visual frontend
        self.v_frontend = VisualFrontend(args)
        self.v_ds = nn.Conv1d(512, 256, 1, bias=False)

        # visual adaptor
        stacks = []
        for x in range(5):
            stacks +=[VisualConv1D(args, V=256, H=512)]
        self.visual_conv = nn.Sequential(*stacks)
            
        

    def forward(self, visual):
        visual = self.v_frontend(visual.unsqueeze(1))
        visual = self.v_ds(visual)

        visual = self.visual_conv(visual)
        return visual



class ResNetLayer(nn.Module):

    """
    A ResNet layer used to build the ResNet network.
    Architecture:
    --> conv-bn-relu -> conv -> + -> bn-relu -> conv-bn-relu -> conv -> + -> bn-relu -->
     |                        |   |                                    |
     -----> downsample ------>    ------------------------------------->
    """

    def __init__(self, inplanes, outplanes, stride):
        super(ResNetLayer, self).__init__()
        self.conv1a = nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1a = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001)
        self.conv2a = nn.Conv2d(outplanes, outplanes, kernel_size=3, stride=1, padding=1, bias=False)
        self.stride = stride
        self.downsample = nn.Conv2d(inplanes, outplanes, kernel_size=(1,1), stride=stride, bias=False)
        self.outbna = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001)

        self.conv1b = nn.Conv2d(outplanes, outplanes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1b = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001)
        self.conv2b = nn.Conv2d(outplanes, outplanes, kernel_size=3, stride=1, padding=1, bias=False)
        self.outbnb = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001)
        return


    def forward(self, inputBatch):
        batch = F.relu(self.bn1a(self.conv1a(inputBatch)))
        batch = self.conv2a(batch)
        if self.stride == 1:
            residualBatch = inputBatch
        else:
            residualBatch = self.downsample(inputBatch)
        batch = batch + residualBatch
        intermediateBatch = batch
        batch = F.relu(self.outbna(batch))

        batch = F.relu(self.bn1b(self.conv1b(batch)))
        batch = self.conv2b(batch)
        residualBatch = intermediateBatch
        batch = batch + residualBatch
        outputBatch = F.relu(self.outbnb(batch))
        return outputBatch



class ResNet(nn.Module):

    """
    An 18-layer ResNet architecture.
    """

    def __init__(self):
        super(ResNet, self).__init__()
        self.layer1 = ResNetLayer(64, 64, stride=1)
        self.layer2 = ResNetLayer(64, 128, stride=2)
        self.layer3 = ResNetLayer(128, 256, stride=2)
        self.layer4 = ResNetLayer(256, 512, stride=2)
        self.avgpool = nn.AvgPool2d(kernel_size=(4,4), stride=(1,1))
        return


    def forward(self, inputBatch):
        batch = self.layer1(inputBatch)
        batch = self.layer2(batch)
        batch = self.layer3(batch)
        batch = self.layer4(batch)
        outputBatch = self.avgpool(batch)
        return outputBatch



class VisualFrontend(nn.Module):

    """
    A visual feature extraction module. Generates a 512-dim feature vector per video frame.
    Architecture: A 3D convolution block followed by an 18-layer ResNet.
    """

    def __init__(self, args):
        super(VisualFrontend, self).__init__()
        self.args =args
        if self.args.causal:
            padding = (4,3,3)
        else:
            padding = (2,3,3)

        self.frontend3D = nn.Sequential(
                            nn.Conv3d(1, 64, kernel_size=(5,7,7), stride=(1,2,2), padding=padding, bias=False),
                            nn.BatchNorm3d(64, momentum=0.01, eps=0.001),
                            nn.ReLU(),
                            nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2), padding=(0,1,1))
                        )
        self.resnet = ResNet()
        return


    def forward(self, batch):
        batchsize = batch.shape[0]

        batch = self.frontend3D[0](batch)
        if self.args.causal:
            batch = batch[:,:,:-4,:,:]
        batch = self.frontend3D[1](batch)
        batch = self.frontend3D[2](batch)
        batch = self.frontend3D[3](batch)

        batch = batch.transpose(1, 2)
        batch = batch.reshape(batch.shape[0]*batch.shape[1], batch.shape[2], batch.shape[3], batch.shape[4])
        outputBatch = self.resnet(batch)
        outputBatch = outputBatch.reshape(batchsize, -1, 512)
        outputBatch = outputBatch.transpose(1 ,2)
        return outputBatch




class VisualConv1D(nn.Module):
    def __init__(self, args, V=256, H=512, kernel_size=3, dilation=1):
        super(VisualConv1D, self).__init__()
        self.args =args

        self.relu_0 = nn.ReLU()
        self.norm_0 = nn.BatchNorm1d(V)
        self.conv1x1 = nn.Conv1d(V, H, 1, bias=False)
        self.relu = nn.ReLU()
        self.norm_1 = nn.BatchNorm1d(H)
        self.dconv_pad = (dilation * (kernel_size - 1)) // 2 if not self.args.causal else (
            dilation * (kernel_size - 1))
        self.dsconv = nn.Conv1d(H, H, kernel_size, stride=1, padding=self.dconv_pad, dilation=1, groups=H)
        self.prelu = nn.PReLU()
        self.norm_2 = nn.BatchNorm1d(H)
        self.pw_conv = nn.Conv1d(H, V, 1, bias=False)

    def forward(self, x):
        out = self.relu_0(x)
        out = self.norm_0(out)
        out = self.conv1x1(out)
        out = self.relu(out)
        out = self.norm_1(out)
        out = self.dsconv(out)
        if self.args.causal:
            out = out[:, :, :-self.dconv_pad]
        out = self.prelu(out)
        out = self.norm_2(out)
        out = self.pw_conv(out)
        return out + x