Spaces:
Running
on
Zero
Running
on
Zero
alibabasglab
commited on
Upload 19 files
Browse files- utils/__pycache__/__init__.cpython-36.pyc +0 -0
- utils/__pycache__/__init__.cpython-37.pyc +0 -0
- utils/__pycache__/__init__.cpython-38.pyc +0 -0
- utils/__pycache__/bandwidth_sub.cpython-312.pyc +0 -0
- utils/__pycache__/decode.cpython-312.pyc +0 -0
- utils/__pycache__/decode.cpython-38.pyc +0 -0
- utils/__pycache__/misc.cpython-312.pyc +0 -0
- utils/__pycache__/misc.cpython-36.pyc +0 -0
- utils/__pycache__/misc.cpython-37.pyc +0 -0
- utils/__pycache__/misc.cpython-38.pyc +0 -0
- utils/__pycache__/time_dataset.cpython-36.pyc +0 -0
- utils/__pycache__/time_dataset.cpython-37.pyc +0 -0
- utils/__pycache__/time_dataset.cpython-38.pyc +0 -0
- utils/__pycache__/video_process.cpython-312.pyc +0 -0
- utils/__pycache__/video_process.cpython-38.pyc +0 -0
- utils/bandwidth_sub.py +123 -0
- utils/decode.py +609 -0
- utils/misc.py +380 -0
- utils/video_process.py +361 -0
utils/__pycache__/__init__.cpython-36.pyc
ADDED
Binary file (245 Bytes). View file
|
|
utils/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (268 Bytes). View file
|
|
utils/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (270 Bytes). View file
|
|
utils/__pycache__/bandwidth_sub.cpython-312.pyc
ADDED
Binary file (6.12 kB). View file
|
|
utils/__pycache__/decode.cpython-312.pyc
ADDED
Binary file (28.1 kB). View file
|
|
utils/__pycache__/decode.cpython-38.pyc
ADDED
Binary file (13.4 kB). View file
|
|
utils/__pycache__/misc.cpython-312.pyc
ADDED
Binary file (17.1 kB). View file
|
|
utils/__pycache__/misc.cpython-36.pyc
ADDED
Binary file (3.23 kB). View file
|
|
utils/__pycache__/misc.cpython-37.pyc
ADDED
Binary file (3.25 kB). View file
|
|
utils/__pycache__/misc.cpython-38.pyc
ADDED
Binary file (11.4 kB). View file
|
|
utils/__pycache__/time_dataset.cpython-36.pyc
ADDED
Binary file (5.8 kB). View file
|
|
utils/__pycache__/time_dataset.cpython-37.pyc
ADDED
Binary file (6.09 kB). View file
|
|
utils/__pycache__/time_dataset.cpython-38.pyc
ADDED
Binary file (6.15 kB). View file
|
|
utils/__pycache__/video_process.cpython-312.pyc
ADDED
Binary file (26.5 kB). View file
|
|
utils/__pycache__/video_process.cpython-38.pyc
ADDED
Binary file (12.3 kB). View file
|
|
utils/bandwidth_sub.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import soundfile as sf
|
3 |
+
import librosa
|
4 |
+
import os
|
5 |
+
from scipy.signal import butter, filtfilt, stft, istft
|
6 |
+
|
7 |
+
# Step 1: Load audio files
|
8 |
+
def load_audio(audio_path):
|
9 |
+
audio, sr = librosa.load(audio_path, sr=48000)
|
10 |
+
#audio, fs = sf.read(audio_path)
|
11 |
+
return audio, sr
|
12 |
+
|
13 |
+
# Step 2: Detect effective signal bandwidth
|
14 |
+
def detect_bandwidth_org(signal, fs, energy_threshold=0.95):
|
15 |
+
f, t, Zxx = stft(signal, fs=fs)
|
16 |
+
psd = np.abs(Zxx)**2
|
17 |
+
total_energy = np.sum(psd)
|
18 |
+
cumulative_energy = np.cumsum(np.sum(psd, axis=1)) / total_energy
|
19 |
+
f_low = f[np.argmax(cumulative_energy > (1 - energy_threshold))]
|
20 |
+
f_high = f[np.argmax(cumulative_energy >= energy_threshold)]
|
21 |
+
return f_low, f_high
|
22 |
+
|
23 |
+
def detect_bandwidth(signal, fs, energy_threshold=0.99):
|
24 |
+
f, t, Zxx = stft(signal, fs=fs)
|
25 |
+
psd = np.abs(Zxx)**2
|
26 |
+
total_energy = np.sum(psd)
|
27 |
+
cumulative_energy = np.cumsum(np.sum(psd, axis=1)) / total_energy
|
28 |
+
|
29 |
+
# Exclude DC component (0 Hz)
|
30 |
+
valid_indices = np.where(f > 0)[0]
|
31 |
+
f_low = f[valid_indices][np.argmax(cumulative_energy[valid_indices] > (1 - energy_threshold))]
|
32 |
+
f_high = f[np.argmax(cumulative_energy >= energy_threshold)]
|
33 |
+
return f_low, f_high
|
34 |
+
|
35 |
+
# Step 3: Apply bandpass and lowpass filters
|
36 |
+
def bandpass_filter(signal, fs, f_low, f_high):
|
37 |
+
nyquist = 0.5 * fs
|
38 |
+
low = f_low / nyquist
|
39 |
+
high = f_high / nyquist
|
40 |
+
b, a = butter(N=4, Wn=[low, high], btype='band')
|
41 |
+
return filtfilt(b, a, signal)
|
42 |
+
|
43 |
+
def lowpass_filter(signal, fs, cutoff):
|
44 |
+
nyquist = 0.5 * fs
|
45 |
+
cutoff_normalized = cutoff / nyquist
|
46 |
+
b, a = butter(N=4, Wn=cutoff_normalized, btype='low')
|
47 |
+
return filtfilt(b, a, signal)
|
48 |
+
|
49 |
+
def highpass_filter(signal, fs, cutoff):
|
50 |
+
nyquist = 0.5 * fs
|
51 |
+
cutoff_normalized = cutoff / nyquist
|
52 |
+
b, a = butter(N=4, Wn=cutoff_normalized, btype='high')
|
53 |
+
return filtfilt(b, a, signal)
|
54 |
+
|
55 |
+
# Step 4: Replace bandwidth
|
56 |
+
def replace_bandwidth(signal1, signal2, fs, f_low, f_high):
|
57 |
+
# Extract effective band from signal1
|
58 |
+
#effective_band = bandpass_filter(signal1, fs, f_low, f_high)
|
59 |
+
effective_band = lowpass_filter(signal1, fs, f_high)
|
60 |
+
# Extract lowpass band from signal2
|
61 |
+
#signal2_lowpass = lowpass_filter(signal2, fs, f_high)
|
62 |
+
signal2_highpass = highpass_filter(signal2, fs, f_high)
|
63 |
+
|
64 |
+
# Match lengths of the two signals
|
65 |
+
min_length = min(len(effective_band), len(signal2_highpass))
|
66 |
+
effective_band = effective_band[:min_length]
|
67 |
+
signal2_highpass = signal2_highpass[:min_length]
|
68 |
+
|
69 |
+
# Combine the two signals
|
70 |
+
return signal2_highpass + effective_band
|
71 |
+
|
72 |
+
# Step 5: Smooth transitions
|
73 |
+
def smooth_transition(signal1, signal2, fs, transition_band=100):
|
74 |
+
fade = np.linspace(0, 1, int(transition_band * fs / 1000))
|
75 |
+
crossfade = np.concatenate([fade, np.ones(len(signal1) - len(fade))])
|
76 |
+
min_length = min(len(signal1), len(signal2))
|
77 |
+
smoothed_signal = (1 - crossfade) * signal2[:min_length] + crossfade * signal1[:min_length]
|
78 |
+
return smoothed_signal
|
79 |
+
|
80 |
+
# Step 6: Save audio
|
81 |
+
def save_audio(file_path, audio, fs):
|
82 |
+
sf.write(file_path, audio, fs)
|
83 |
+
|
84 |
+
|
85 |
+
def bandwidth_sub(low_bandwidth_audio, high_bandwidth_audio, fs=48000):
|
86 |
+
# Detect effective bandwidth of the first signal
|
87 |
+
f_low, f_high = detect_bandwidth(low_bandwidth_audio, fs)
|
88 |
+
|
89 |
+
# Replace the lower frequency of the second audio
|
90 |
+
substituted_audio = replace_bandwidth(low_bandwidth_audio, high_bandwidth_audio, fs, f_low, f_high)
|
91 |
+
|
92 |
+
# Optional: Smooth the transition
|
93 |
+
smoothed_audio = smooth_transition(substituted_audio, low_bandwidth_audio, fs)
|
94 |
+
return smoothed_audio
|
95 |
+
|
96 |
+
# Main process
|
97 |
+
if __name__ == "__main__":
|
98 |
+
low_spectra_dir = 'LJSpeech_22k'
|
99 |
+
upper_spectra_dir = 'LJSpeech_22k_hifi-sr_speech_g_03925000'
|
100 |
+
output_dir = upper_spectra_dir+'_restored'
|
101 |
+
if not os.path.exists(output_dir):
|
102 |
+
os.mkdir(output_dir)
|
103 |
+
|
104 |
+
filelist = [file for file in os.listdir(low_spectra_dir) if file.endswith('.wav')]
|
105 |
+
for audio_name in filelist:
|
106 |
+
audio1, fs1 = load_audio(low_spectra_dir + "/" + audio_name) # Source for effective bandwidth
|
107 |
+
audio2, fs2 = load_audio(upper_spectra_dir + "/" + audio_name.replace('.wav', '_generated.wav')) # Target audio to replace lower frequencies
|
108 |
+
|
109 |
+
if fs1 != 48000 or fs2 != 48000:
|
110 |
+
raise ValueError("Both audio files must have a sampling rate of 48 kHz.")
|
111 |
+
|
112 |
+
# Detect effective bandwidth of the first signal
|
113 |
+
f_low, f_high = detect_bandwidth(audio1, fs1)
|
114 |
+
print(f"Effective bandwidth: {f_low} Hz to {f_high} Hz")
|
115 |
+
|
116 |
+
# Replace the lower frequency of the second audio
|
117 |
+
replaced_audio = replace_bandwidth(audio1, audio2, fs2, f_low, f_high)
|
118 |
+
|
119 |
+
# Optional: Smooth the transition
|
120 |
+
smoothed_audio = smooth_transition(replaced_audio, audio1, fs1)
|
121 |
+
|
122 |
+
# Save the result
|
123 |
+
save_audio(output_dir+"/"+audio_name, smoothed_audio, fs2)
|
utils/decode.py
ADDED
@@ -0,0 +1,609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python -u
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
# Authors: Shengkui Zhao, Zexu Pan
|
4 |
+
|
5 |
+
from __future__ import absolute_import
|
6 |
+
from __future__ import division
|
7 |
+
from __future__ import print_function
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import numpy as np
|
11 |
+
import os
|
12 |
+
import sys
|
13 |
+
import librosa
|
14 |
+
import torchaudio
|
15 |
+
from utils.misc import power_compress, power_uncompress, stft, istft, compute_fbank
|
16 |
+
from utils.bandwidth_sub import bandwidth_sub
|
17 |
+
from dataloader.meldataset import mel_spectrogram
|
18 |
+
|
19 |
+
# Constant for normalizing audio values
|
20 |
+
MAX_WAV_VALUE = 32768.0
|
21 |
+
|
22 |
+
def decode_one_audio(model, device, inputs, args):
|
23 |
+
"""Decodes audio using the specified model based on the provided network type.
|
24 |
+
|
25 |
+
This function selects the appropriate decoding function based on the specified
|
26 |
+
network in the arguments and processes the input audio data accordingly.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
model (nn.Module): The trained model used for decoding.
|
30 |
+
device (torch.device): The device (CPU or GPU) to perform computations on.
|
31 |
+
inputs (torch.Tensor): Input audio tensor.
|
32 |
+
args (Namespace): Contains arguments for network configuration.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
list: A list of decoded audio outputs for each speaker.
|
36 |
+
"""
|
37 |
+
# Select decoding function based on the network type specified in args
|
38 |
+
if args.network == 'FRCRN_SE_16K':
|
39 |
+
return decode_one_audio_frcrn_se_16k(model, device, inputs, args)
|
40 |
+
elif args.network == 'MossFormer2_SE_48K':
|
41 |
+
return decode_one_audio_mossformer2_se_48k(model, device, inputs, args)
|
42 |
+
elif args.network == 'MossFormerGAN_SE_16K':
|
43 |
+
return decode_one_audio_mossformergan_se_16k(model, device, inputs, args)
|
44 |
+
elif args.network == 'MossFormer2_SS_16K':
|
45 |
+
return decode_one_audio_mossformer2_ss_16k(model, device, inputs, args)
|
46 |
+
elif args.network == 'MossFormer2_SR_48K':
|
47 |
+
return decode_one_audio_mossformer2_sr_48k(model, device, inputs, args)
|
48 |
+
else:
|
49 |
+
print("No network found!") # Print error message if no valid network is specified
|
50 |
+
return
|
51 |
+
|
52 |
+
def decode_one_audio_mossformer2_ss_16k(model, device, inputs, args):
|
53 |
+
"""Decodes audio using the MossFormer2 model for speech separation at 16kHz.
|
54 |
+
|
55 |
+
This function handles the audio decoding process by processing the input tensor
|
56 |
+
in segments, if necessary, and applies the model to obtain separated audio outputs.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
model (nn.Module): The trained MossFormer2 model for decoding.
|
60 |
+
device (torch.device): The device (CPU or GPU) to perform computations on.
|
61 |
+
inputs (torch.Tensor): Input audio tensor of shape (B, T), where B is the batch size
|
62 |
+
and T is the number of time steps.
|
63 |
+
args (Namespace): Contains arguments for decoding configuration.
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
list: A list of decoded audio outputs for each speaker.
|
67 |
+
"""
|
68 |
+
out = [] # Initialize the list to store outputs
|
69 |
+
decode_do_segment = False # Flag to determine if segmentation is needed
|
70 |
+
window = int(args.sampling_rate * args.decode_window) # Decoding window length
|
71 |
+
stride = int(window * 0.75) # Decoding stride if segmentation is used
|
72 |
+
b, t = inputs.shape # Get batch size and input length
|
73 |
+
|
74 |
+
rms_input = (inputs ** 2).mean() ** 0.5
|
75 |
+
|
76 |
+
# Check if input length exceeds one-time decode length to decide on segmentation
|
77 |
+
if t > args.sampling_rate * args.one_time_decode_length:
|
78 |
+
decode_do_segment = True # Enable segment decoding for long sequences
|
79 |
+
|
80 |
+
# Pad the inputs to ensure they meet the decoding window length requirements
|
81 |
+
if t < window:
|
82 |
+
inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], window - t))], axis=1)
|
83 |
+
elif t < window + stride:
|
84 |
+
padding = window + stride - t
|
85 |
+
inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], padding))], axis=1)
|
86 |
+
else:
|
87 |
+
if (t - window) % stride != 0:
|
88 |
+
padding = t - (t - window) // stride * stride
|
89 |
+
inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], padding))], axis=1)
|
90 |
+
|
91 |
+
inputs = torch.from_numpy(np.float32(inputs)).to(device) # Convert inputs to torch tensor and move to device
|
92 |
+
b, t = inputs.shape # Update batch size and input length after conversion
|
93 |
+
|
94 |
+
# Process the inputs in segments if necessary
|
95 |
+
if decode_do_segment:
|
96 |
+
outputs = np.zeros((args.num_spks, t)) # Initialize output array for each speaker
|
97 |
+
give_up_length = (window - stride) // 2 # Calculate length to give up at each segment
|
98 |
+
current_idx = 0 # Initialize current index for segmentation
|
99 |
+
while current_idx + window <= t:
|
100 |
+
tmp_input = inputs[:, current_idx:current_idx + window] # Get segment input
|
101 |
+
tmp_out_list = model(tmp_input) # Forward pass through the model
|
102 |
+
for spk in range(args.num_spks):
|
103 |
+
# Convert output for the current speaker to numpy
|
104 |
+
tmp_out_list[spk] = tmp_out_list[spk][0, :].detach().cpu().numpy()
|
105 |
+
if current_idx == 0:
|
106 |
+
# For the first segment, use the whole segment minus the give-up length
|
107 |
+
outputs[spk, current_idx:current_idx + window - give_up_length] = tmp_out_list[spk][:-give_up_length]
|
108 |
+
else:
|
109 |
+
# For subsequent segments, account for the give-up length at both ends
|
110 |
+
outputs[spk, current_idx + give_up_length:current_idx + window - give_up_length] = tmp_out_list[spk][give_up_length:-give_up_length]
|
111 |
+
current_idx += stride # Move to the next segment
|
112 |
+
for spk in range(args.num_spks):
|
113 |
+
out.append(outputs[spk, :]) # Append outputs for each speaker
|
114 |
+
else:
|
115 |
+
# If no segmentation is required, process the entire input
|
116 |
+
out_list = model(inputs)
|
117 |
+
for spk in range(args.num_spks):
|
118 |
+
out.append(out_list[spk][0, :].detach().cpu().numpy()) # Append output for each speaker
|
119 |
+
|
120 |
+
# Normalize the outputs back to the input magnitude for each speaker
|
121 |
+
for spk in range(args.num_spks):
|
122 |
+
rms_out = (out[spk] ** 2).mean() ** 0.5
|
123 |
+
out[spk] = out[spk] / rms_out * rms_input
|
124 |
+
return out # Return the list of normalized outputs
|
125 |
+
|
126 |
+
def decode_one_audio_frcrn_se_16k(model, device, inputs, args):
|
127 |
+
"""Decodes audio using the FRCRN model for speech enhancement at 16kHz.
|
128 |
+
|
129 |
+
This function processes the input audio tensor either in segments or as a whole,
|
130 |
+
depending on the length of the input. The model's inference method is applied
|
131 |
+
to obtain the enhanced audio output.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
model (nn.Module): The trained FRCRN model used for decoding.
|
135 |
+
device (torch.device): The device (CPU or GPU) to perform computations on.
|
136 |
+
inputs (torch.Tensor): Input audio tensor of shape (B, T), where B is the batch size
|
137 |
+
and T is the number of time steps.
|
138 |
+
args (Namespace): Contains arguments for decoding configuration.
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
numpy.ndarray: The decoded audio output, which has been enhanced by the model.
|
142 |
+
"""
|
143 |
+
decode_do_segment = False # Flag to determine if segmentation is needed
|
144 |
+
|
145 |
+
window = int(args.sampling_rate * args.decode_window) # Decoding window length
|
146 |
+
stride = int(window * 0.75) # Decoding stride for segmenting the input
|
147 |
+
b, t = inputs.shape # Get batch size (b) and input length (t)
|
148 |
+
|
149 |
+
# Check if input length exceeds one-time decode length to decide on segmentation
|
150 |
+
if t > args.sampling_rate * args.one_time_decode_length:
|
151 |
+
decode_do_segment = True # Enable segment decoding for long sequences
|
152 |
+
|
153 |
+
# Pad the inputs to meet the decoding window length requirements
|
154 |
+
if t < window:
|
155 |
+
# Pad with zeros if the input length is less than the window size
|
156 |
+
inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], window - t))], axis=1)
|
157 |
+
elif t < window + stride:
|
158 |
+
# Pad the input if its length is less than the window plus stride
|
159 |
+
padding = window + stride - t
|
160 |
+
inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], padding))], axis=1)
|
161 |
+
else:
|
162 |
+
# Ensure the input length is a multiple of the stride
|
163 |
+
if (t - window) % stride != 0:
|
164 |
+
padding = t - (t - window) // stride * stride
|
165 |
+
inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], padding))], axis=1)
|
166 |
+
|
167 |
+
# Convert inputs to a PyTorch tensor and move to the specified device
|
168 |
+
inputs = torch.from_numpy(np.float32(inputs)).to(device)
|
169 |
+
b, t = inputs.shape # Update batch size and input length after conversion
|
170 |
+
|
171 |
+
# Process the inputs in segments if necessary
|
172 |
+
if decode_do_segment:
|
173 |
+
outputs = np.zeros(t) # Initialize the output array
|
174 |
+
give_up_length = (window - stride) // 2 # Calculate length to give up at each segment
|
175 |
+
current_idx = 0 # Initialize current index for segmentation
|
176 |
+
|
177 |
+
while current_idx + window <= t:
|
178 |
+
tmp_input = inputs[:, current_idx:current_idx + window] # Get segment input
|
179 |
+
tmp_output = model.inference(tmp_input).detach().cpu().numpy() # Inference on segment
|
180 |
+
|
181 |
+
# For the first segment, use the whole segment minus the give-up length
|
182 |
+
if current_idx == 0:
|
183 |
+
outputs[current_idx:current_idx + window - give_up_length] = tmp_output[:-give_up_length]
|
184 |
+
else:
|
185 |
+
# For subsequent segments, account for the give-up length
|
186 |
+
outputs[current_idx + give_up_length:current_idx + window - give_up_length] = tmp_output[give_up_length:-give_up_length]
|
187 |
+
|
188 |
+
current_idx += stride # Move to the next segment
|
189 |
+
else:
|
190 |
+
# If no segmentation is required, process the entire input
|
191 |
+
outputs = model.inference(inputs).detach().cpu().numpy() # Inference on full input
|
192 |
+
|
193 |
+
return outputs # Return the decoded audio output
|
194 |
+
|
195 |
+
def decode_one_audio_mossformergan_se_16k(model, device, inputs, args):
|
196 |
+
"""Decodes audio using the MossFormerGAN model for speech enhancement at 16kHz.
|
197 |
+
|
198 |
+
This function processes the input audio tensor either in segments or as a whole,
|
199 |
+
depending on the length of the input. The `_decode_one_audio_mossformergan_se_16k`
|
200 |
+
function is called to perform the model inference and return the enhanced audio output.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
model (nn.Module): The trained MossFormerGAN model used for decoding.
|
204 |
+
device (torch.device): The device (CPU or GPU) for computation.
|
205 |
+
inputs (torch.Tensor): Input audio tensor of shape (B, T), where B is the batch size
|
206 |
+
and T is the number of time steps.
|
207 |
+
args (Namespace): Contains arguments for decoding configuration.
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
numpy.ndarray: The decoded audio output, which has been enhanced by the model.
|
211 |
+
"""
|
212 |
+
decode_do_segment = False # Flag to determine if segmentation is needed
|
213 |
+
window = int(args.sampling_rate * args.decode_window) # Decoding window length
|
214 |
+
stride = int(window * 0.75) # Decoding stride for segmenting the input
|
215 |
+
b, t = inputs.shape # Get batch size (b) and input length (t)
|
216 |
+
|
217 |
+
# Check if input length exceeds one-time decode length to decide on segmentation
|
218 |
+
if t > args.sampling_rate * args.one_time_decode_length:
|
219 |
+
decode_do_segment = True # Enable segment decoding for long sequences
|
220 |
+
|
221 |
+
# Convert inputs to a PyTorch tensor and move to the specified device
|
222 |
+
inputs = torch.from_numpy(np.float32(inputs)).to(device)
|
223 |
+
|
224 |
+
# Compute normalization factor based on the input
|
225 |
+
norm_factor = torch.sqrt(inputs.size(-1) / torch.sum((inputs ** 2.0), dim=-1))
|
226 |
+
|
227 |
+
b, t = inputs.shape # Update batch size and input length after conversion
|
228 |
+
|
229 |
+
# Process the inputs in segments if necessary
|
230 |
+
if decode_do_segment:
|
231 |
+
outputs = np.zeros(t) # Initialize the output array
|
232 |
+
give_up_length = (window - stride) // 2 # Calculate length to give up at each segment
|
233 |
+
current_idx = 0 # Initialize current index for segmentation
|
234 |
+
|
235 |
+
while current_idx + window <= t:
|
236 |
+
tmp_input = inputs[:, current_idx:current_idx + window] # Get segment input
|
237 |
+
tmp_output = _decode_one_audio_mossformergan_se_16k(model, device, tmp_input, norm_factor, args) # Inference on segment
|
238 |
+
|
239 |
+
# For the first segment, use the whole segment minus the give-up length
|
240 |
+
if current_idx == 0:
|
241 |
+
outputs[current_idx:current_idx + window - give_up_length] = tmp_output[:-give_up_length]
|
242 |
+
else:
|
243 |
+
# For subsequent segments, account for the give-up length
|
244 |
+
outputs[current_idx + give_up_length:current_idx + window - give_up_length] = tmp_output[give_up_length:-give_up_length]
|
245 |
+
|
246 |
+
current_idx += stride # Move to the next segment
|
247 |
+
|
248 |
+
return outputs # Return the accumulated outputs from segments
|
249 |
+
else:
|
250 |
+
# If no segmentation is required, process the entire input
|
251 |
+
return _decode_one_audio_mossformergan_se_16k(model, device, inputs, norm_factor, args) # Inference on full input
|
252 |
+
|
253 |
+
@torch.no_grad()
|
254 |
+
def _decode_one_audio_mossformergan_se_16k(model, device, inputs, norm_factor, args):
|
255 |
+
"""Processes audio inputs through the MossFormerGAN model for speech enhancement.
|
256 |
+
|
257 |
+
This function performs the following steps:
|
258 |
+
1. Pads the input audio tensor to fit the model requirements.
|
259 |
+
2. Computes a normalization factor for the input tensor.
|
260 |
+
3. Applies Short-Time Fourier Transform (STFT) to convert the audio into the frequency domain.
|
261 |
+
4. Processes the STFT representation through the model to predict the real and imaginary components.
|
262 |
+
5. Uncompresses the predicted spectrogram and applies Inverse STFT (iSTFT) to convert back to time domain audio.
|
263 |
+
6. Normalizes the output audio.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
model (nn.Module): The trained MossFormerGAN model used for decoding.
|
267 |
+
device (torch.device): The device (CPU or GPU) for computation.
|
268 |
+
inputs (torch.Tensor): Input audio tensor of shape (B, T), where B is the batch size and T is the number of time steps.
|
269 |
+
norm_factor (torch.Tensor): A norm tensor to regularize input amplitude
|
270 |
+
args (Namespace): Contains arguments for STFT parameters and normalization.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
numpy.ndarray: The decoded audio output, which has been enhanced by the model.
|
274 |
+
"""
|
275 |
+
input_len = inputs.size(-1) # Get the length of the input audio
|
276 |
+
nframe = int(np.ceil(input_len / args.win_inc)) # Calculate the number of frames based on window increment
|
277 |
+
padded_len = int(nframe * args.win_inc) # Calculate the padded length to fit the model
|
278 |
+
padding_len = padded_len - input_len # Determine how much padding is needed
|
279 |
+
|
280 |
+
# Pad the input audio with the beginning of the input
|
281 |
+
inputs = torch.cat([inputs, inputs[:, :padding_len]], dim=-1)
|
282 |
+
|
283 |
+
# Prepare inputs for STFT by transposing and normalizing
|
284 |
+
inputs = torch.transpose(inputs, 0, 1) # Change shape for STFT
|
285 |
+
inputs = torch.transpose(inputs * norm_factor, 0, 1) # Apply normalization factor and transpose back
|
286 |
+
|
287 |
+
# Perform Short-Time Fourier Transform (STFT) on the normalized inputs
|
288 |
+
inputs_spec = stft(inputs, args, center=True, periodic=True, onesided=True)
|
289 |
+
inputs_spec = inputs_spec.to(torch.float32) # Ensure the spectrogram is in float32 format
|
290 |
+
|
291 |
+
# Compress the power of the spectrogram to improve model performance
|
292 |
+
inputs_spec = power_compress(inputs_spec).permute(0, 1, 3, 2)
|
293 |
+
|
294 |
+
# Pass the compressed spectrogram through the model to get predicted real and imaginary parts
|
295 |
+
out_list = model(inputs_spec)
|
296 |
+
pred_real, pred_imag = out_list[0].permute(0, 1, 3, 2), out_list[1].permute(0, 1, 3, 2)
|
297 |
+
|
298 |
+
# Uncompress the predicted spectrogram to get the magnitude and phase
|
299 |
+
pred_spec_uncompress = power_uncompress(pred_real, pred_imag).squeeze(1)
|
300 |
+
|
301 |
+
# Perform Inverse STFT (iSTFT) to convert back to time domain audio
|
302 |
+
outputs = istft(pred_spec_uncompress, args, center=True, periodic=True, onesided=True)
|
303 |
+
|
304 |
+
# Normalize the output audio by dividing by the normalization factor
|
305 |
+
outputs = outputs.squeeze(0) / norm_factor
|
306 |
+
|
307 |
+
return outputs[:input_len].detach().cpu().numpy() # Return the output as a numpy array
|
308 |
+
|
309 |
+
def decode_one_audio_mossformer2_se_48k(model, device, inputs, args):
|
310 |
+
"""Processes audio inputs through the MossFormer2 model for speech enhancement at 48kHz.
|
311 |
+
|
312 |
+
This function decodes audio input using the following steps:
|
313 |
+
1. Normalizes the audio input to a maximum WAV value.
|
314 |
+
2. Checks the length of the input to decide between online decoding and batch processing.
|
315 |
+
3. For longer inputs, processes the audio in segments using a sliding window.
|
316 |
+
4. Computes filter banks and their deltas for the audio segment.
|
317 |
+
5. Passes the filter banks through the model to get a predicted mask.
|
318 |
+
6. Applies the mask to the spectrogram of the audio segment and reconstructs the audio.
|
319 |
+
7. For shorter inputs, processes them in one go without segmentation.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
model (nn.Module): The trained MossFormer2 model used for decoding.
|
323 |
+
device (torch.device): The device (CPU or GPU) for computation.
|
324 |
+
inputs (torch.Tensor): Input audio tensor of shape (B, T), where B is the batch size and T is the number of time steps.
|
325 |
+
args (Namespace): Contains arguments for sampling rate, window size, and other parameters.
|
326 |
+
|
327 |
+
Returns:
|
328 |
+
numpy.ndarray: The decoded audio output, normalized to the range [-1, 1].
|
329 |
+
"""
|
330 |
+
inputs = inputs[0, :] # Extract the first element from the input tensor
|
331 |
+
input_len = inputs.shape[0] # Get the length of the input audio
|
332 |
+
inputs = inputs * MAX_WAV_VALUE # Normalize the input to the maximum WAV value
|
333 |
+
|
334 |
+
# Check if input length exceeds the defined threshold for online decoding
|
335 |
+
if input_len > args.sampling_rate * args.one_time_decode_length: # 20 seconds
|
336 |
+
online_decoding = True
|
337 |
+
if online_decoding:
|
338 |
+
window = int(args.sampling_rate * args.decode_window) # Define window length (e.g., 4s for 48kHz)
|
339 |
+
stride = int(window * 0.75) # Define stride length (e.g., 3s for 48kHz)
|
340 |
+
t = inputs.shape[0] # Update length after potential padding
|
341 |
+
|
342 |
+
# Pad input if necessary to match window size
|
343 |
+
if t < window:
|
344 |
+
inputs = np.concatenate([inputs, np.zeros(window - t)], 0)
|
345 |
+
elif t < window + stride:
|
346 |
+
padding = window + stride - t
|
347 |
+
inputs = np.concatenate([inputs, np.zeros(padding)], 0)
|
348 |
+
else:
|
349 |
+
if (t - window) % stride != 0:
|
350 |
+
padding = t - (t - window) // stride * stride
|
351 |
+
inputs = np.concatenate([inputs, np.zeros(padding)], 0)
|
352 |
+
|
353 |
+
audio = torch.from_numpy(inputs).type(torch.FloatTensor) # Convert to Torch tensor
|
354 |
+
t = audio.shape[0] # Update length after conversion
|
355 |
+
outputs = torch.from_numpy(np.zeros(t)) # Initialize output tensor
|
356 |
+
give_up_length = (window - stride) // 2 # Determine length to ignore at the edges
|
357 |
+
dfsmn_memory_length = 0 # Placeholder for potential memory length
|
358 |
+
current_idx = 0 # Initialize current index for sliding window
|
359 |
+
|
360 |
+
# Process audio in sliding window segments
|
361 |
+
while current_idx + window <= t:
|
362 |
+
# Select appropriate segment of audio for processing
|
363 |
+
if current_idx < dfsmn_memory_length:
|
364 |
+
audio_segment = audio[0:current_idx + window]
|
365 |
+
else:
|
366 |
+
audio_segment = audio[current_idx - dfsmn_memory_length:current_idx + window]
|
367 |
+
|
368 |
+
# Compute filter banks for the audio segment
|
369 |
+
fbanks = compute_fbank(audio_segment.unsqueeze(0), args)
|
370 |
+
|
371 |
+
# Compute deltas for filter banks
|
372 |
+
fbank_tr = torch.transpose(fbanks, 0, 1) # Transpose for delta computation
|
373 |
+
fbank_delta = torchaudio.functional.compute_deltas(fbank_tr) # First-order delta
|
374 |
+
fbank_delta_delta = torchaudio.functional.compute_deltas(fbank_delta) # Second-order delta
|
375 |
+
|
376 |
+
# Transpose back to original shape
|
377 |
+
fbank_delta = torch.transpose(fbank_delta, 0, 1)
|
378 |
+
fbank_delta_delta = torch.transpose(fbank_delta_delta, 0, 1)
|
379 |
+
|
380 |
+
# Concatenate the original filter banks with their deltas
|
381 |
+
fbanks = torch.cat([fbanks, fbank_delta, fbank_delta_delta], dim=1)
|
382 |
+
fbanks = fbanks.unsqueeze(0).to(device) # Add batch dimension and move to device
|
383 |
+
|
384 |
+
# Pass filter banks through the model
|
385 |
+
Out_List = model(fbanks)
|
386 |
+
pred_mask = Out_List[-1] # Get the predicted mask from the output
|
387 |
+
|
388 |
+
# Apply STFT to the audio segment
|
389 |
+
spectrum = stft(audio_segment, args)
|
390 |
+
pred_mask = pred_mask.permute(2, 1, 0) # Permute dimensions for masking
|
391 |
+
masked_spec = spectrum.cpu() * pred_mask.detach().cpu() # Apply mask to the spectrum
|
392 |
+
masked_spec_complex = masked_spec[:, :, 0] + 1j * masked_spec[:, :, 1] # Convert to complex form
|
393 |
+
|
394 |
+
# Reconstruct audio from the masked spectrogram
|
395 |
+
output_segment = istft(masked_spec_complex, args, len(audio_segment))
|
396 |
+
|
397 |
+
# Store the output segment in the output tensor
|
398 |
+
if current_idx == 0:
|
399 |
+
outputs[current_idx:current_idx + window - give_up_length] = output_segment[:-give_up_length]
|
400 |
+
else:
|
401 |
+
output_segment = output_segment[-window:] # Get the latest window of output
|
402 |
+
outputs[current_idx + give_up_length:current_idx + window - give_up_length] = output_segment[give_up_length:-give_up_length]
|
403 |
+
|
404 |
+
current_idx += stride # Move to the next segment
|
405 |
+
|
406 |
+
else:
|
407 |
+
# Process the entire audio at once if it is shorter than the threshold
|
408 |
+
audio = torch.from_numpy(inputs).type(torch.FloatTensor)
|
409 |
+
fbanks = compute_fbank(audio.unsqueeze(0), args)
|
410 |
+
|
411 |
+
# Compute deltas for filter banks
|
412 |
+
fbank_tr = torch.transpose(fbanks, 0, 1)
|
413 |
+
fbank_delta = torchaudio.functional.compute_deltas(fbank_tr)
|
414 |
+
fbank_delta_delta = torchaudio.functional.compute_deltas(fbank_delta)
|
415 |
+
fbank_delta = torch.transpose(fbank_delta, 0, 1)
|
416 |
+
fbank_delta_delta = torch.transpose(fbank_delta_delta, 0, 1)
|
417 |
+
|
418 |
+
# Concatenate the original filter banks with their deltas
|
419 |
+
fbanks = torch.cat([fbanks, fbank_delta, fbank_delta_delta], dim=1)
|
420 |
+
fbanks = fbanks.unsqueeze(0).to(device) # Add batch dimension and move to device
|
421 |
+
|
422 |
+
# Pass filter banks through the model
|
423 |
+
Out_List = model(fbanks)
|
424 |
+
pred_mask = Out_List[-1] # Get the predicted mask
|
425 |
+
spectrum = stft(audio, args) # Apply STFT to the audio
|
426 |
+
pred_mask = pred_mask.permute(2, 1, 0) # Permute dimensions for masking
|
427 |
+
masked_spec = spectrum * pred_mask.detach().cpu() # Apply mask to the spectrum
|
428 |
+
masked_spec_complex = masked_spec[:, :, 0] + 1j * masked_spec[:, :, 1] # Convert to complex form
|
429 |
+
|
430 |
+
# Reconstruct audio from the masked spectrogram
|
431 |
+
outputs = istft(masked_spec_complex, args, len(audio))
|
432 |
+
|
433 |
+
return outputs.numpy() / MAX_WAV_VALUE # Return the output normalized to [-1, 1]
|
434 |
+
|
435 |
+
def get_mel(x, args):
|
436 |
+
"""
|
437 |
+
Calls mel_spectrogram() and returns the mel-spectrogram output
|
438 |
+
"""
|
439 |
+
|
440 |
+
return mel_spectrogram(x, args.n_fft, args.num_mels, args.sampling_rate, args.hop_size, args.win_size, args.fmin, args.fmax)
|
441 |
+
|
442 |
+
def decode_one_audio_mossformer2_sr_48k(model, device, inputs, args):
|
443 |
+
"""
|
444 |
+
This function decodes a single audio input using a two-stage speech super-resolution model.
|
445 |
+
Supports both offline decoding (for short audio) and online decoding (for long audio)
|
446 |
+
with a sliding window approach.
|
447 |
+
|
448 |
+
Parameters:
|
449 |
+
-----------
|
450 |
+
model : list
|
451 |
+
A list of two-stage models:
|
452 |
+
- model[0]: The transformer-based Mossformer model for feature enhancement.
|
453 |
+
- model[1]: The vocoder for generating high-resolution waveforms.
|
454 |
+
device : str or torch.device
|
455 |
+
The computation device ('cpu' or 'cuda') where the models will run.
|
456 |
+
inputs : torch.Tensor
|
457 |
+
A tensor of shape (batch_size, num_samples) containing low-resolution audio signals.
|
458 |
+
Only the first audio (inputs[0, :]) is processed.
|
459 |
+
args : Namespace
|
460 |
+
An object containing the following attributes:
|
461 |
+
- sampling_rate: Sampling rate of the input audio (e.g., 48,000 Hz).
|
462 |
+
- one_time_decode_length: Maximum duration (in seconds) for offline decoding.
|
463 |
+
- decode_window: Window size (in seconds) for sliding window processing.
|
464 |
+
- Other optional attributes used for Mel spectrogram extraction.
|
465 |
+
|
466 |
+
Returns:
|
467 |
+
--------
|
468 |
+
numpy.ndarray
|
469 |
+
The high-resolution audio waveform as a NumPy array, refined and upsampled.
|
470 |
+
"""
|
471 |
+
inputs = inputs[0, :] # Extract the first element from the input tensor
|
472 |
+
input_len = inputs.shape[0] # Get the length of the input audio
|
473 |
+
#inputs = inputs * MAX_WAV_VALUE # Normalize the input to the maximum WAV value
|
474 |
+
|
475 |
+
# Check if input length exceeds the defined threshold for online decoding
|
476 |
+
if input_len > args.sampling_rate * args.one_time_decode_length: # 20 seconds
|
477 |
+
online_decoding = True
|
478 |
+
if online_decoding:
|
479 |
+
window = int(args.sampling_rate * args.decode_window) # Define window length (e.g., 4s for 48kHz)
|
480 |
+
stride = int(window * 0.75) # Define stride length (e.g., 3s for 48kHz)
|
481 |
+
t = inputs.shape[0] # Update length after potential padding
|
482 |
+
|
483 |
+
# Pad input if necessary to match window size
|
484 |
+
if t < window:
|
485 |
+
inputs = np.concatenate([inputs, np.zeros(window - t)], 0)
|
486 |
+
elif t < window + stride:
|
487 |
+
padding = window + stride - t
|
488 |
+
inputs = np.concatenate([inputs, np.zeros(padding)], 0)
|
489 |
+
else:
|
490 |
+
if (t - window) % stride != 0:
|
491 |
+
padding = t - (t - window) // stride * stride
|
492 |
+
inputs = np.concatenate([inputs, np.zeros(padding)], 0)
|
493 |
+
|
494 |
+
audio = torch.from_numpy(inputs).type(torch.FloatTensor) # Convert to Torch tensor
|
495 |
+
t = audio.shape[0] # Update length after conversion
|
496 |
+
outputs = torch.from_numpy(np.zeros(t)) # Initialize output tensor
|
497 |
+
give_up_length = (window - stride) // 2 # Determine length to ignore at the edges
|
498 |
+
dfsmn_memory_length = 0 # Placeholder for potential memory length
|
499 |
+
current_idx = 0 # Initialize current index for sliding window
|
500 |
+
|
501 |
+
# Process audio in sliding window segments
|
502 |
+
while current_idx + window <= t:
|
503 |
+
# Select appropriate segment of audio for processing
|
504 |
+
if current_idx < dfsmn_memory_length:
|
505 |
+
audio_segment = audio[0:current_idx + window]
|
506 |
+
else:
|
507 |
+
audio_segment = audio[current_idx - dfsmn_memory_length:current_idx + window]
|
508 |
+
|
509 |
+
# Pass filter banks through the model
|
510 |
+
mel_segment = get_mel(audio_segment.unsqueeze(0), args)
|
511 |
+
mossformer_output_segment = model[0](mel_segment.to(device))
|
512 |
+
generator_output_segment = model[1](mossformer_output_segment)
|
513 |
+
generator_output_segment = generator_output_segment.squeeze()
|
514 |
+
offset = len(audio_segment) - len(generator_output_segment)
|
515 |
+
# Store the output segment in the output tensor
|
516 |
+
if current_idx == 0:
|
517 |
+
outputs[current_idx:current_idx + window - give_up_length] = generator_output_segment[:-give_up_length+offset]
|
518 |
+
else:
|
519 |
+
generator_output_segment = generator_output_segment[-window:] # Get the latest window of output
|
520 |
+
outputs[current_idx + give_up_length:current_idx + window - give_up_length] = generator_output_segment[give_up_length:-give_up_length+offset]
|
521 |
+
|
522 |
+
current_idx += stride # Move to the next segment
|
523 |
+
|
524 |
+
else:
|
525 |
+
# Process the entire audio at once if it is shorter than the threshold
|
526 |
+
audio = torch.from_numpy(inputs).type(torch.FloatTensor)
|
527 |
+
mel_input = get_mel(audio.unsqueeze(0), args)
|
528 |
+
mossformer_output = model[0](mel_input.to(device))
|
529 |
+
generator_output = model[1](mossformer_output)
|
530 |
+
outputs = generator_output.squeeze()
|
531 |
+
|
532 |
+
outputs = outputs.cpu().numpy()
|
533 |
+
outputs = bandwidth_sub(inputs, outputs)
|
534 |
+
return outputs
|
535 |
+
|
536 |
+
def decode_one_audio_AV_MossFormer2_TSE_16K(model, inputs, args):
|
537 |
+
"""Processes video inputs through the AV mossformer2 model with Target speaker extraction (TSE) for decoding at 16kHz.
|
538 |
+
|
539 |
+
This function decodes audio input using the following steps:
|
540 |
+
1. Checks if the input audio length requires segmentation or can be processed in one go.
|
541 |
+
2. If the input audio is long enough, processes it in overlapping segments using a sliding window approach.
|
542 |
+
3. Applies the model to each segment or the entire input, and collects the output.
|
543 |
+
|
544 |
+
Args:
|
545 |
+
model (nn.Module): The trained SpEx model for speech enhancement.
|
546 |
+
inputs (numpy.ndarray): Input audio and visual data
|
547 |
+
args (Namespace): Contains arguments for sampling rate, window size, and other parameters.
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
numpy.ndarray: The decoded audio output as a NumPy array.
|
551 |
+
"""
|
552 |
+
|
553 |
+
audio, visual = inputs
|
554 |
+
max_val = np.max(np.abs(audio))
|
555 |
+
if max_val > 1:
|
556 |
+
audio /= max_val
|
557 |
+
|
558 |
+
b, t = audio.shape # Get batch size (b) and input length (t)
|
559 |
+
|
560 |
+
decode_do_segement = False # Flag to determine if segmentation is needed
|
561 |
+
# Check if the input length exceeds the defined threshold for segmentation
|
562 |
+
if t > args.sampling_rate * args.one_time_decode_length:
|
563 |
+
decode_do_segement = True # Enable segmentation for long inputs
|
564 |
+
|
565 |
+
# Convert inputs to a PyTorch tensor and move to the specified device
|
566 |
+
audio = torch.from_numpy(np.float32(audio)).to(args.device)
|
567 |
+
visual = torch.from_numpy(np.float32(visual)).to(args.device)
|
568 |
+
|
569 |
+
print(audio.shape)
|
570 |
+
print(visual.shape)
|
571 |
+
|
572 |
+
if decode_do_segement:
|
573 |
+
print('********')
|
574 |
+
outputs = np.zeros(t) # Initialize output array
|
575 |
+
window = args.sampling_rate * args.decode_window # Window length for processing
|
576 |
+
window_v = 25 * args.decode_window
|
577 |
+
stride = int(window * 0.6) # Decoding stride for segmenting the input
|
578 |
+
give_up_length = (window - stride) // 2 # Calculate length to give up at each segment
|
579 |
+
current_idx = 0 # Initialize current index for sliding window
|
580 |
+
|
581 |
+
# Process the audio in overlapping segments
|
582 |
+
while current_idx + window < t:
|
583 |
+
tmp_audio = audio[:, current_idx:current_idx + window] # Select current audio segment
|
584 |
+
|
585 |
+
current_idx_v = int(current_idx/args.sampling_rate*25) # Select current video segment index
|
586 |
+
tmp_video = visual[:, current_idx_v:current_idx_v + window_v, :, :] # Select current video segment
|
587 |
+
|
588 |
+
tmp_output = model(tmp_audio, tmp_video).detach().squeeze().cpu().numpy() # Apply model to the segment
|
589 |
+
|
590 |
+
# For the first segment, use the whole segment minus the give-up length
|
591 |
+
if current_idx == 0:
|
592 |
+
outputs[current_idx:current_idx + window - give_up_length] = tmp_output[:-give_up_length]
|
593 |
+
else:
|
594 |
+
# For subsequent segments, account for the give-up length
|
595 |
+
outputs[current_idx + give_up_length:current_idx + window - give_up_length] = tmp_output[give_up_length:-give_up_length]
|
596 |
+
|
597 |
+
current_idx += stride # Move to the next segment
|
598 |
+
|
599 |
+
# Process the last window of audio
|
600 |
+
tmp_audio = audio[:, -window:]
|
601 |
+
tmp_video = visual[:, -window_v:, :, :]
|
602 |
+
tmp_output = model(tmp_audio, tmp_video).detach().squeeze().cpu().numpy() # Apply model to the segment
|
603 |
+
outputs[-window + give_up_length:] = tmp_output[give_up_length:]
|
604 |
+
else:
|
605 |
+
# Process the entire input at once if segmentation is not needed
|
606 |
+
outputs = model(audio, visual).detach().squeeze().cpu().numpy()
|
607 |
+
|
608 |
+
|
609 |
+
return outputs # Return the decoded audio output as a NumPy array
|
utils/misc.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python -u
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
# Import future compatibility features for Python 2/3
|
5 |
+
from __future__ import absolute_import
|
6 |
+
from __future__ import division
|
7 |
+
from __future__ import print_function
|
8 |
+
|
9 |
+
# Import necessary libraries
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import numpy as np
|
13 |
+
from joblib import Parallel, delayed
|
14 |
+
from pesq import pesq # PESQ metric for speech quality evaluation
|
15 |
+
import os
|
16 |
+
import sys
|
17 |
+
import librosa # Library for audio processing
|
18 |
+
import torchaudio # Library for audio processing with PyTorch
|
19 |
+
|
20 |
+
# Constants
|
21 |
+
MAX_WAV_VALUE = 32768.0 # Maximum value for WAV files
|
22 |
+
EPS = 1e-6 # Small value to avoid division by zero
|
23 |
+
|
24 |
+
def read_and_config_file(input_path, decode=0):
|
25 |
+
"""Reads input paths from a file or directory and configures them for processing.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
input_path (str): Path to the input directory or file.
|
29 |
+
decode (int): Flag indicating if decoding should occur (1 for decode, 0 for standard read).
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
list: A list of processed paths or dictionaries containing input and label paths.
|
33 |
+
"""
|
34 |
+
processed_list = []
|
35 |
+
|
36 |
+
# If decoding is requested, find files in a directory
|
37 |
+
if decode:
|
38 |
+
if os.path.isdir(input_path):
|
39 |
+
processed_list = librosa.util.find_files(input_path, ext="wav") # Look for WAV files
|
40 |
+
if len(processed_list) == 0:
|
41 |
+
processed_list = librosa.util.find_files(input_path, ext="flac") # Fallback to FLAC files
|
42 |
+
else:
|
43 |
+
# Read paths from a file
|
44 |
+
with open(input_path) as fid:
|
45 |
+
for line in fid:
|
46 |
+
path_s = line.strip().split() # Split line into parts
|
47 |
+
processed_list.append(path_s[0]) # Append the first part (input path)
|
48 |
+
return processed_list
|
49 |
+
|
50 |
+
# Read input-label pairs from a file
|
51 |
+
with open(input_path) as fid:
|
52 |
+
for line in fid:
|
53 |
+
tmp_paths = line.strip().split() # Split line into parts
|
54 |
+
if len(tmp_paths) == 3: # Expecting input, label, and duration
|
55 |
+
sample = {'inputs': tmp_paths[0], 'labels': tmp_paths[1], 'duration': float(tmp_paths[2])}
|
56 |
+
elif len(tmp_paths) == 2: # Expecting input and label only
|
57 |
+
sample = {'inputs': tmp_paths[0], 'labels': tmp_paths[1]}
|
58 |
+
processed_list.append(sample) # Append the sample dictionary
|
59 |
+
return processed_list
|
60 |
+
|
61 |
+
def load_checkpoint(checkpoint_path, use_cuda):
|
62 |
+
"""Loads the model checkpoint from the specified path.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
checkpoint_path (str): Path to the checkpoint file.
|
66 |
+
use_cuda (bool): Flag indicating whether to use CUDA for loading.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
dict: The loaded checkpoint containing model parameters.
|
70 |
+
"""
|
71 |
+
#if use_cuda:
|
72 |
+
# checkpoint = torch.load(checkpoint_path) # Load using CUDA
|
73 |
+
#else:
|
74 |
+
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) # Load to CPU
|
75 |
+
return checkpoint
|
76 |
+
|
77 |
+
def get_learning_rate(optimizer):
|
78 |
+
"""Retrieves the current learning rate from the optimizer.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
optimizer (torch.optim.Optimizer): The optimizer instance.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
float: The current learning rate.
|
85 |
+
"""
|
86 |
+
return optimizer.param_groups[0]["lr"]
|
87 |
+
|
88 |
+
def reload_for_eval(model, checkpoint_dir, use_cuda):
|
89 |
+
"""Reloads a model for evaluation from the specified checkpoint directory.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
model (nn.Module): The model to be reloaded.
|
93 |
+
checkpoint_dir (str): Directory containing checkpoints.
|
94 |
+
use_cuda (bool): Flag indicating whether to use CUDA.
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
None
|
98 |
+
"""
|
99 |
+
print('Reloading from: {}'.format(checkpoint_dir))
|
100 |
+
best_name = os.path.join(checkpoint_dir, 'last_best_checkpoint') # Path to the best checkpoint
|
101 |
+
ckpt_name = os.path.join(checkpoint_dir, 'last_checkpoint') # Path to the last checkpoint
|
102 |
+
if os.path.isfile(best_name):
|
103 |
+
name = best_name
|
104 |
+
elif os.path.isfile(ckpt_name):
|
105 |
+
name = ckpt_name
|
106 |
+
else:
|
107 |
+
print('Warning: No existing checkpoint or best_model found!')
|
108 |
+
return
|
109 |
+
|
110 |
+
with open(name, 'r') as f:
|
111 |
+
model_name = f.readline().strip() # Read the model name from the checkpoint file
|
112 |
+
checkpoint_path = os.path.join(checkpoint_dir, model_name) # Construct full checkpoint path
|
113 |
+
print('Checkpoint path: {}'.format(checkpoint_path))
|
114 |
+
checkpoint = load_checkpoint(checkpoint_path, use_cuda) # Load the checkpoint
|
115 |
+
'''
|
116 |
+
if 'model' in checkpoint:
|
117 |
+
model.load_state_dict(checkpoint['model'], strict=False) # Load model parameters
|
118 |
+
else:
|
119 |
+
model.load_state_dict(checkpoint, strict=False)
|
120 |
+
'''
|
121 |
+
if 'model' in checkpoint:
|
122 |
+
pretrained_model = checkpoint['model']
|
123 |
+
else:
|
124 |
+
pretrained_model = checkpoint
|
125 |
+
state = model.state_dict()
|
126 |
+
for key in state.keys():
|
127 |
+
if key in pretrained_model and state[key].shape == pretrained_model[key].shape:
|
128 |
+
state[key] = pretrained_model[key]
|
129 |
+
elif key.replace('module.', '') in pretrained_model and state[key].shape == pretrained_model[key.replace('module.', '')].shape:
|
130 |
+
state[key] = pretrained_model[key.replace('module.', '')]
|
131 |
+
elif 'module.'+key in pretrained_model and state[key].shape == pretrained_model['module.'+key].shape:
|
132 |
+
state[key] = pretrained_model['module.'+key]
|
133 |
+
elif self.print: print(f'{key} not loaded')
|
134 |
+
model.load_state_dict(state)
|
135 |
+
|
136 |
+
print('=> Reload well-trained model {} for decoding.'.format(model_name))
|
137 |
+
|
138 |
+
|
139 |
+
def reload_model(model, optimizer, checkpoint_dir, use_cuda=True, strict=True):
|
140 |
+
"""Reloads the model and optimizer state from a checkpoint.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
model (nn.Module): The model to be reloaded.
|
144 |
+
optimizer (torch.optim.Optimizer): The optimizer to be reloaded.
|
145 |
+
checkpoint_dir (str): Directory containing checkpoints.
|
146 |
+
use_cuda (bool): Flag indicating whether to use CUDA.
|
147 |
+
strict (bool): If True, requires keys in state_dict to match exactly.
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
tuple: Current epoch and step.
|
151 |
+
"""
|
152 |
+
ckpt_name = os.path.join(checkpoint_dir, 'checkpoint') # Path to the checkpoint file
|
153 |
+
if os.path.isfile(ckpt_name):
|
154 |
+
with open(ckpt_name, 'r') as f:
|
155 |
+
model_name = f.readline().strip() # Read model name from checkpoint file
|
156 |
+
checkpoint_path = os.path.join(checkpoint_dir, model_name) # Construct full checkpoint path
|
157 |
+
checkpoint = load_checkpoint(checkpoint_path, use_cuda) # Load the checkpoint
|
158 |
+
model.load_state_dict(checkpoint['model'], strict=strict) # Load model parameters
|
159 |
+
optimizer.load_state_dict(checkpoint['optimizer']) # Load optimizer parameters
|
160 |
+
epoch = checkpoint['epoch'] # Get current epoch
|
161 |
+
step = checkpoint['step'] # Get current step
|
162 |
+
print('=> Reloaded previous model and optimizer.')
|
163 |
+
else:
|
164 |
+
print('[!] Checkpoint directory is empty. Train a new model ...')
|
165 |
+
epoch = 0 # Initialize epoch
|
166 |
+
step = 0 # Initialize step
|
167 |
+
return epoch, step
|
168 |
+
|
169 |
+
def save_checkpoint(model, optimizer, epoch, step, checkpoint_dir, mode='checkpoint'):
|
170 |
+
"""Saves the model and optimizer state to a checkpoint file.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
model (nn.Module): The model to be saved.
|
174 |
+
optimizer (torch.optim.Optimizer): The optimizer to be saved.
|
175 |
+
epoch (int): Current epoch number.
|
176 |
+
step (int): Current training step number.
|
177 |
+
checkpoint_dir (str): Directory to save the checkpoint.
|
178 |
+
mode (str): Mode of the checkpoint ('checkpoint' or other).
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
None
|
182 |
+
"""
|
183 |
+
checkpoint_path = os.path.join(
|
184 |
+
checkpoint_dir, 'model.ckpt-{}-{}.pt'.format(epoch, step)) # Construct checkpoint file path
|
185 |
+
torch.save({'model': model.state_dict(), # Save model parameters
|
186 |
+
'optimizer': optimizer.state_dict(), # Save optimizer parameters
|
187 |
+
'epoch': epoch, # Save epoch
|
188 |
+
'step': step}, checkpoint_path) # Save checkpoint to file
|
189 |
+
|
190 |
+
# Save the checkpoint name to a file for easy access
|
191 |
+
with open(os.path.join(checkpoint_dir, mode), 'w') as f:
|
192 |
+
f.write('model.ckpt-{}-{}.pt'.format(epoch, step))
|
193 |
+
print("=> Saved checkpoint:", checkpoint_path)
|
194 |
+
|
195 |
+
def setup_lr(opt, lr):
|
196 |
+
"""Sets the learning rate for all parameter groups in the optimizer.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
opt (torch.optim.Optimizer): The optimizer instance whose learning rate needs to be set.
|
200 |
+
lr (float): The new learning rate to be assigned.
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
None
|
204 |
+
"""
|
205 |
+
for param_group in opt.param_groups:
|
206 |
+
param_group['lr'] = lr # Update the learning rate for each parameter group
|
207 |
+
|
208 |
+
|
209 |
+
def pesq_loss(clean, noisy, sr=16000):
|
210 |
+
"""Calculates the PESQ (Perceptual Evaluation of Speech Quality) score between clean and noisy signals.
|
211 |
+
|
212 |
+
Args:
|
213 |
+
clean (ndarray): The clean audio signal.
|
214 |
+
noisy (ndarray): The noisy audio signal.
|
215 |
+
sr (int): Sample rate of the audio signals (default is 16000 Hz).
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
float: The PESQ score or -1 in case of an error.
|
219 |
+
"""
|
220 |
+
try:
|
221 |
+
pesq_score = pesq(sr, clean, noisy, 'wb') # Compute PESQ score
|
222 |
+
except:
|
223 |
+
# PESQ may fail due to silent periods in audio
|
224 |
+
pesq_score = -1 # Assign -1 to indicate error
|
225 |
+
return pesq_score
|
226 |
+
|
227 |
+
|
228 |
+
def batch_pesq(clean, noisy):
|
229 |
+
"""Computes the PESQ scores for batches of clean and noisy audio signals.
|
230 |
+
|
231 |
+
Args:
|
232 |
+
clean (list of ndarray): List of clean audio signals.
|
233 |
+
noisy (list of ndarray): List of noisy audio signals.
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
torch.FloatTensor: A tensor of normalized PESQ scores or None if any score is -1.
|
237 |
+
"""
|
238 |
+
# Parallel processing for calculating PESQ scores for each pair of clean and noisy signals
|
239 |
+
pesq_score = Parallel(n_jobs=-1)(delayed(pesq_loss)(c, n) for c, n in zip(clean, noisy))
|
240 |
+
pesq_score = np.array(pesq_score) # Convert to NumPy array
|
241 |
+
|
242 |
+
if -1 in pesq_score: # Check for errors in PESQ calculations
|
243 |
+
return None
|
244 |
+
|
245 |
+
# Normalize PESQ scores to a scale of 0 to 1
|
246 |
+
pesq_score = (pesq_score - 1) / 3.5
|
247 |
+
return torch.FloatTensor(pesq_score).to('cuda') # Return normalized scores as a tensor
|
248 |
+
|
249 |
+
|
250 |
+
def power_compress(x):
|
251 |
+
"""Compresses the power of a complex spectrogram.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
x (torch.Tensor): Input tensor with real and imaginary components.
|
255 |
+
|
256 |
+
Returns:
|
257 |
+
torch.Tensor: Compressed magnitude and phase representation of the input.
|
258 |
+
"""
|
259 |
+
real = x[..., 0] # Extract real part
|
260 |
+
imag = x[..., 1] # Extract imaginary part
|
261 |
+
spec = torch.complex(real, imag) # Create complex tensor from real and imaginary parts
|
262 |
+
mag = torch.abs(spec) # Compute magnitude
|
263 |
+
phase = torch.angle(spec) # Compute phase
|
264 |
+
|
265 |
+
mag = mag**0.3 # Compress magnitude using power of 0.3
|
266 |
+
real_compress = mag * torch.cos(phase) # Reconstruct real part
|
267 |
+
imag_compress = mag * torch.sin(phase) # Reconstruct imaginary part
|
268 |
+
return torch.stack([real_compress, imag_compress], 1) # Stack compressed parts
|
269 |
+
|
270 |
+
|
271 |
+
def power_uncompress(real, imag):
|
272 |
+
"""Uncompresses the power of a compressed complex spectrogram.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
real (torch.Tensor): Compressed real component.
|
276 |
+
imag (torch.Tensor): Compressed imaginary component.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
torch.Tensor: Uncompressed complex spectrogram.
|
280 |
+
"""
|
281 |
+
spec = torch.complex(real, imag) # Create complex tensor from real and imaginary parts
|
282 |
+
mag = torch.abs(spec) # Compute magnitude
|
283 |
+
phase = torch.angle(spec) # Compute phase
|
284 |
+
|
285 |
+
mag = mag**(1./0.3) # Uncompress magnitude by raising to the power of 1/0.3
|
286 |
+
real_uncompress = mag * torch.cos(phase) # Reconstruct real part
|
287 |
+
imag_uncompress = mag * torch.sin(phase) # Reconstruct imaginary part
|
288 |
+
return torch.stack([real_uncompress, imag_uncompress], -1) # Stack uncompressed parts
|
289 |
+
|
290 |
+
|
291 |
+
def stft(x, args, center=False, periodic=False, onesided=None):
|
292 |
+
"""Computes the Short-Time Fourier Transform (STFT) of an audio signal.
|
293 |
+
|
294 |
+
Args:
|
295 |
+
x (torch.Tensor): Input audio signal.
|
296 |
+
args (Namespace): Configuration arguments containing window type and lengths.
|
297 |
+
center (bool): Whether to center the window.
|
298 |
+
|
299 |
+
Returns:
|
300 |
+
torch.Tensor: The computed STFT of the input signal.
|
301 |
+
"""
|
302 |
+
win_type = args.win_type
|
303 |
+
win_len = args.win_len
|
304 |
+
win_inc = args.win_inc
|
305 |
+
fft_len = args.fft_len
|
306 |
+
|
307 |
+
# Select window type and create window tensor
|
308 |
+
if win_type == 'hamming':
|
309 |
+
window = torch.hamming_window(win_len, periodic=periodic).to(x.device)
|
310 |
+
elif win_type == 'hanning':
|
311 |
+
window = torch.hann_window(win_len, periodic=periodic).to(x.device)
|
312 |
+
else:
|
313 |
+
print(f"In STFT, {win_type} is not supported!")
|
314 |
+
return
|
315 |
+
|
316 |
+
# Compute and return the STFT
|
317 |
+
return torch.stft(x, fft_len, win_inc, win_len, center=center, window=window, onesided=onesided, return_complex=False)
|
318 |
+
|
319 |
+
def istft(x, args, slen=None, center=False, normalized=False, periodic=False, onesided=None, return_complex=False):
|
320 |
+
"""Computes the inverse Short-Time Fourier Transform (ISTFT) of a complex spectrogram.
|
321 |
+
|
322 |
+
Args:
|
323 |
+
x (torch.Tensor): Input complex spectrogram.
|
324 |
+
args (Namespace): Configuration arguments containing window type and lengths.
|
325 |
+
slen (int, optional): Length of the output signal.
|
326 |
+
center (bool): Whether to center the window.
|
327 |
+
normalized (bool): Whether to normalize the output.
|
328 |
+
onesided (bool, optional): If True, computes only the one-sided transform.
|
329 |
+
return_complex (bool): If True, returns complex output.
|
330 |
+
|
331 |
+
Returns:
|
332 |
+
torch.Tensor: The reconstructed audio signal from the spectrogram.
|
333 |
+
"""
|
334 |
+
win_type = args.win_type
|
335 |
+
win_len = args.win_len
|
336 |
+
win_inc = args.win_inc
|
337 |
+
fft_len = args.fft_len
|
338 |
+
|
339 |
+
# Select window type and create window tensor
|
340 |
+
if win_type == 'hamming':
|
341 |
+
window = torch.hamming_window(win_len, periodic=periodic).to(x.device)
|
342 |
+
elif win_type == 'hanning':
|
343 |
+
window = torch.hann_window(win_len, periodic=periodic).to(x.device)
|
344 |
+
else:
|
345 |
+
print(f"In ISTFT, {win_type} is not supported!")
|
346 |
+
return
|
347 |
+
|
348 |
+
try:
|
349 |
+
# Attempt to compute ISTFT
|
350 |
+
output = torch.istft(x, n_fft=fft_len, hop_length=win_inc, win_length=win_len,
|
351 |
+
window=window, center=center, normalized=normalized,
|
352 |
+
onesided=onesided, length=slen, return_complex=False)
|
353 |
+
except:
|
354 |
+
# Handle potential errors by converting x to a complex tensor
|
355 |
+
x_complex = torch.view_as_complex(x)
|
356 |
+
output = torch.istft(x_complex, n_fft=fft_len, hop_length=win_inc, win_length=win_len,
|
357 |
+
window=window, center=center, normalized=normalized,
|
358 |
+
onesided=onesided, length=slen, return_complex=False)
|
359 |
+
return output
|
360 |
+
|
361 |
+
def compute_fbank(audio_in, args):
|
362 |
+
"""Computes the filter bank features from an audio signal.
|
363 |
+
|
364 |
+
Args:
|
365 |
+
audio_in (torch.Tensor): Input audio signal.
|
366 |
+
args (Namespace): Configuration arguments containing window length, shift, and sampling rate.
|
367 |
+
|
368 |
+
Returns:
|
369 |
+
torch.Tensor: Computed filter bank features.
|
370 |
+
"""
|
371 |
+
frame_length = args.win_len / args.sampling_rate * 1000 # Frame length in milliseconds
|
372 |
+
frame_shift = args.win_inc / args.sampling_rate * 1000 # Frame shift in milliseconds
|
373 |
+
|
374 |
+
# Compute and return filter bank features using Kaldi's implementation
|
375 |
+
return torchaudio.compliance.kaldi.fbank(audio_in, dither=1.0, frame_length=frame_length,
|
376 |
+
frame_shift=frame_shift, num_mel_bins=args.num_mels,
|
377 |
+
sample_frequency=args.sampling_rate, window_type=args.win_type)
|
378 |
+
|
379 |
+
|
380 |
+
|
utils/video_process.py
ADDED
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import sys, time, os, tqdm, torch, argparse, glob, subprocess, warnings, cv2, pickle, pdb, math, python_speech_features
|
4 |
+
import numpy as np
|
5 |
+
from scipy import signal
|
6 |
+
from shutil import rmtree
|
7 |
+
from scipy.io import wavfile
|
8 |
+
from scipy.interpolate import interp1d
|
9 |
+
from sklearn.metrics import accuracy_score, f1_score
|
10 |
+
import soundfile as sf
|
11 |
+
|
12 |
+
from scenedetect.video_manager import VideoManager
|
13 |
+
from scenedetect.scene_manager import SceneManager
|
14 |
+
from scenedetect.frame_timecode import FrameTimecode
|
15 |
+
from scenedetect.stats_manager import StatsManager
|
16 |
+
from scenedetect.detectors import ContentDetector
|
17 |
+
|
18 |
+
from models.av_mossformer2_tse.faceDetector.s3fd import S3FD
|
19 |
+
|
20 |
+
from .decode import decode_one_audio_AV_MossFormer2_TSE_16K
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
def process_tse(args, model, device, data_reader, output_wave_dir):
|
25 |
+
video_args = args_param()
|
26 |
+
video_args.model = model
|
27 |
+
video_args.device = device
|
28 |
+
video_args.sampling_rate = args.sampling_rate
|
29 |
+
args.device = device
|
30 |
+
assert args.sampling_rate == 16000
|
31 |
+
with torch.no_grad():
|
32 |
+
for videoPath in data_reader: # Loop over all video samples
|
33 |
+
savFolder = videoPath.split(os.path.sep)[-1]
|
34 |
+
video_args.savePath = f'{output_wave_dir}/{savFolder.split(".")[0]}/'
|
35 |
+
video_args.videoPath = videoPath
|
36 |
+
main(video_args, args)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
def args_param():
|
41 |
+
warnings.filterwarnings("ignore")
|
42 |
+
parser = argparse.ArgumentParser()
|
43 |
+
parser.add_argument('--nDataLoaderThread', type=int, default=10, help='Number of workers')
|
44 |
+
parser.add_argument('--facedetScale', type=float, default=0.25, help='Scale factor for face detection, the frames will be scale to 0.25 orig')
|
45 |
+
parser.add_argument('--minTrack', type=int, default=50, help='Number of min frames for each shot')
|
46 |
+
parser.add_argument('--numFailedDet', type=int, default=10, help='Number of missed detections allowed before tracking is stopped')
|
47 |
+
parser.add_argument('--minFaceSize', type=int, default=1, help='Minimum face size in pixels')
|
48 |
+
parser.add_argument('--cropScale', type=float, default=0.40, help='Scale bounding box')
|
49 |
+
parser.add_argument('--start', type=int, default=0, help='The start time of the video')
|
50 |
+
parser.add_argument('--duration', type=int, default=0, help='The duration of the video, when set as 0, will extract the whole video')
|
51 |
+
video_args = parser.parse_args()
|
52 |
+
return video_args
|
53 |
+
|
54 |
+
|
55 |
+
# Main function
|
56 |
+
def main(video_args, args):
|
57 |
+
# Initialization
|
58 |
+
video_args.pyaviPath = os.path.join(video_args.savePath, 'py_video')
|
59 |
+
video_args.pyframesPath = os.path.join(video_args.savePath, 'pyframes')
|
60 |
+
video_args.pyworkPath = os.path.join(video_args.savePath, 'pywork')
|
61 |
+
video_args.pycropPath = os.path.join(video_args.savePath, 'py_faceTracks')
|
62 |
+
if os.path.exists(video_args.savePath):
|
63 |
+
rmtree(video_args.savePath)
|
64 |
+
os.makedirs(video_args.pyaviPath, exist_ok = True) # The path for the input video, input audio, output video
|
65 |
+
os.makedirs(video_args.pyframesPath, exist_ok = True) # Save all the video frames
|
66 |
+
os.makedirs(video_args.pyworkPath, exist_ok = True) # Save the results in this process by the pckl method
|
67 |
+
os.makedirs(video_args.pycropPath, exist_ok = True) # Save the detected face clips (audio+video) in this process
|
68 |
+
|
69 |
+
# Extract video
|
70 |
+
video_args.videoFilePath = os.path.join(video_args.pyaviPath, 'video.avi')
|
71 |
+
# If duration did not set, extract the whole video, otherwise extract the video from 'video_args.start' to 'video_args.start + video_args.duration'
|
72 |
+
if video_args.duration == 0:
|
73 |
+
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -async 1 -r 25 %s -loglevel panic" % \
|
74 |
+
(video_args.videoPath, video_args.nDataLoaderThread, video_args.videoFilePath))
|
75 |
+
else:
|
76 |
+
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -ss %.3f -to %.3f -async 1 -r 25 %s -loglevel panic" % \
|
77 |
+
(video_args.videoPath, video_args.nDataLoaderThread, video_args.start, video_args.start + video_args.duration, video_args.videoFilePath))
|
78 |
+
subprocess.call(command, shell=True, stdout=None)
|
79 |
+
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the video and save in %s \r\n" %(video_args.videoFilePath))
|
80 |
+
|
81 |
+
# Extract audio
|
82 |
+
video_args.audioFilePath = os.path.join(video_args.pyaviPath, 'audio.wav')
|
83 |
+
command = ("ffmpeg -y -i %s -qscale:a 0 -ac 1 -vn -threads %d -ar 16000 %s -loglevel panic" % \
|
84 |
+
(video_args.videoFilePath, video_args.nDataLoaderThread, video_args.audioFilePath))
|
85 |
+
subprocess.call(command, shell=True, stdout=None)
|
86 |
+
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the audio and save in %s \r\n" %(video_args.audioFilePath))
|
87 |
+
|
88 |
+
# Extract the video frames
|
89 |
+
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -f image2 %s -loglevel panic" % \
|
90 |
+
(video_args.videoFilePath, video_args.nDataLoaderThread, os.path.join(video_args.pyframesPath, '%06d.jpg')))
|
91 |
+
subprocess.call(command, shell=True, stdout=None)
|
92 |
+
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the frames and save in %s \r\n" %(video_args.pyframesPath))
|
93 |
+
|
94 |
+
# Scene detection for the video frames
|
95 |
+
scene = scene_detect(video_args)
|
96 |
+
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Scene detection and save in %s \r\n" %(video_args.pyworkPath))
|
97 |
+
|
98 |
+
# Face detection for the video frames
|
99 |
+
faces = inference_video(video_args)
|
100 |
+
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face detection and save in %s \r\n" %(video_args.pyworkPath))
|
101 |
+
|
102 |
+
# Face tracking
|
103 |
+
allTracks, vidTracks = [], []
|
104 |
+
for shot in scene:
|
105 |
+
if shot[1].frame_num - shot[0].frame_num >= video_args.minTrack: # Discard the shot frames less than minTrack frames
|
106 |
+
allTracks.extend(track_shot(video_args, faces[shot[0].frame_num:shot[1].frame_num])) # 'frames' to present this tracks' timestep, 'bbox' presents the location of the faces
|
107 |
+
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face track and detected %d tracks \r\n" %len(allTracks))
|
108 |
+
|
109 |
+
# Face clips cropping
|
110 |
+
for ii, track in tqdm.tqdm(enumerate(allTracks), total = len(allTracks)):
|
111 |
+
vidTracks.append(crop_video(video_args, track, os.path.join(video_args.pycropPath, '%05d'%ii)))
|
112 |
+
savePath = os.path.join(video_args.pyworkPath, 'tracks.pckl')
|
113 |
+
with open(savePath, 'wb') as fil:
|
114 |
+
pickle.dump(vidTracks, fil)
|
115 |
+
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face Crop and saved in %s tracks \r\n" %video_args.pycropPath)
|
116 |
+
fil = open(savePath, 'rb')
|
117 |
+
vidTracks = pickle.load(fil)
|
118 |
+
fil.close()
|
119 |
+
|
120 |
+
# AVSE
|
121 |
+
files = glob.glob("%s/*.avi"%video_args.pycropPath)
|
122 |
+
files.sort()
|
123 |
+
|
124 |
+
est_sources = evaluate_network(files, video_args, args)
|
125 |
+
|
126 |
+
visualization(vidTracks, est_sources, video_args)
|
127 |
+
|
128 |
+
# combine files in pycrop
|
129 |
+
for idx, file in enumerate(files):
|
130 |
+
print(file)
|
131 |
+
command = f"ffmpeg -i {file} {file[:-9]}orig_{idx}.mp4 ;"
|
132 |
+
command += f"rm {file} ;"
|
133 |
+
command += f"rm {file.replace('.avi', '.wav')} ;"
|
134 |
+
|
135 |
+
command += f"ffmpeg -i {file[:-9]}orig_{idx}.mp4 -i {file[:-9]}est_{idx}.wav -c:v copy -map 0:v:0 -map 1:a:0 -shortest {file[:-9]}est_{idx}.mp4 ;"
|
136 |
+
# command += f"rm {file[:-9]}est_{idx}.wav ;"
|
137 |
+
|
138 |
+
output = subprocess.call(command, shell=True, stdout=None)
|
139 |
+
|
140 |
+
rmtree(video_args.pyworkPath)
|
141 |
+
rmtree(video_args.pyframesPath)
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
def scene_detect(video_args):
|
147 |
+
# CPU: Scene detection, output is the list of each shot's time duration
|
148 |
+
videoManager = VideoManager([video_args.videoFilePath])
|
149 |
+
statsManager = StatsManager()
|
150 |
+
sceneManager = SceneManager(statsManager)
|
151 |
+
sceneManager.add_detector(ContentDetector())
|
152 |
+
baseTimecode = videoManager.get_base_timecode()
|
153 |
+
videoManager.set_downscale_factor()
|
154 |
+
videoManager.start()
|
155 |
+
sceneManager.detect_scenes(frame_source = videoManager)
|
156 |
+
sceneList = sceneManager.get_scene_list(baseTimecode)
|
157 |
+
savePath = os.path.join(video_args.pyworkPath, 'scene.pckl')
|
158 |
+
if sceneList == []:
|
159 |
+
sceneList = [(videoManager.get_base_timecode(),videoManager.get_current_timecode())]
|
160 |
+
with open(savePath, 'wb') as fil:
|
161 |
+
pickle.dump(sceneList, fil)
|
162 |
+
sys.stderr.write('%s - scenes detected %d\n'%(video_args.videoFilePath, len(sceneList)))
|
163 |
+
return sceneList
|
164 |
+
|
165 |
+
def inference_video(video_args):
|
166 |
+
# GPU: Face detection, output is the list contains the face location and score in this frame
|
167 |
+
DET = S3FD(device=video_args.device)
|
168 |
+
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg'))
|
169 |
+
flist.sort()
|
170 |
+
dets = []
|
171 |
+
for fidx, fname in enumerate(flist):
|
172 |
+
image = cv2.imread(fname)
|
173 |
+
imageNumpy = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
174 |
+
bboxes = DET.detect_faces(imageNumpy, conf_th=0.9, scales=[video_args.facedetScale])
|
175 |
+
dets.append([])
|
176 |
+
for bbox in bboxes:
|
177 |
+
dets[-1].append({'frame':fidx, 'bbox':(bbox[:-1]).tolist(), 'conf':bbox[-1]}) # dets has the frames info, bbox info, conf info
|
178 |
+
sys.stderr.write('%s-%05d; %d dets\r' % (video_args.videoFilePath, fidx, len(dets[-1])))
|
179 |
+
savePath = os.path.join(video_args.pyworkPath,'faces.pckl')
|
180 |
+
with open(savePath, 'wb') as fil:
|
181 |
+
pickle.dump(dets, fil)
|
182 |
+
return dets
|
183 |
+
|
184 |
+
def bb_intersection_over_union(boxA, boxB, evalCol = False):
|
185 |
+
# CPU: IOU Function to calculate overlap between two image
|
186 |
+
xA = max(boxA[0], boxB[0])
|
187 |
+
yA = max(boxA[1], boxB[1])
|
188 |
+
xB = min(boxA[2], boxB[2])
|
189 |
+
yB = min(boxA[3], boxB[3])
|
190 |
+
interArea = max(0, xB - xA) * max(0, yB - yA)
|
191 |
+
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
|
192 |
+
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
|
193 |
+
if evalCol == True:
|
194 |
+
iou = interArea / float(boxAArea)
|
195 |
+
else:
|
196 |
+
iou = interArea / float(boxAArea + boxBArea - interArea)
|
197 |
+
return iou
|
198 |
+
|
199 |
+
def track_shot(video_args, sceneFaces):
|
200 |
+
# CPU: Face tracking
|
201 |
+
iouThres = 0.5 # Minimum IOU between consecutive face detections
|
202 |
+
tracks = []
|
203 |
+
while True:
|
204 |
+
track = []
|
205 |
+
for frameFaces in sceneFaces:
|
206 |
+
for face in frameFaces:
|
207 |
+
if track == []:
|
208 |
+
track.append(face)
|
209 |
+
frameFaces.remove(face)
|
210 |
+
elif face['frame'] - track[-1]['frame'] <= video_args.numFailedDet:
|
211 |
+
iou = bb_intersection_over_union(face['bbox'], track[-1]['bbox'])
|
212 |
+
if iou > iouThres:
|
213 |
+
track.append(face)
|
214 |
+
frameFaces.remove(face)
|
215 |
+
continue
|
216 |
+
else:
|
217 |
+
break
|
218 |
+
if track == []:
|
219 |
+
break
|
220 |
+
elif len(track) > video_args.minTrack:
|
221 |
+
frameNum = np.array([ f['frame'] for f in track ])
|
222 |
+
bboxes = np.array([np.array(f['bbox']) for f in track])
|
223 |
+
frameI = np.arange(frameNum[0],frameNum[-1]+1)
|
224 |
+
bboxesI = []
|
225 |
+
for ij in range(0,4):
|
226 |
+
interpfn = interp1d(frameNum, bboxes[:,ij])
|
227 |
+
bboxesI.append(interpfn(frameI))
|
228 |
+
bboxesI = np.stack(bboxesI, axis=1)
|
229 |
+
if max(np.mean(bboxesI[:,2]-bboxesI[:,0]), np.mean(bboxesI[:,3]-bboxesI[:,1])) > video_args.minFaceSize:
|
230 |
+
tracks.append({'frame':frameI,'bbox':bboxesI})
|
231 |
+
return tracks
|
232 |
+
|
233 |
+
def crop_video(video_args, track, cropFile):
|
234 |
+
# CPU: crop the face clips
|
235 |
+
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg')) # Read the frames
|
236 |
+
flist.sort()
|
237 |
+
vOut = cv2.VideoWriter(cropFile + 't.avi', cv2.VideoWriter_fourcc(*'XVID'), 25, (224,224))# Write video
|
238 |
+
dets = {'x':[], 'y':[], 's':[]}
|
239 |
+
for det in track['bbox']: # Read the tracks
|
240 |
+
dets['s'].append(max((det[3]-det[1]), (det[2]-det[0]))/2)
|
241 |
+
dets['y'].append((det[1]+det[3])/2) # crop center x
|
242 |
+
dets['x'].append((det[0]+det[2])/2) # crop center y
|
243 |
+
dets['s'] = signal.medfilt(dets['s'], kernel_size=13) # Smooth detections
|
244 |
+
dets['x'] = signal.medfilt(dets['x'], kernel_size=13)
|
245 |
+
dets['y'] = signal.medfilt(dets['y'], kernel_size=13)
|
246 |
+
for fidx, frame in enumerate(track['frame']):
|
247 |
+
cs = video_args.cropScale
|
248 |
+
bs = dets['s'][fidx] # Detection box size
|
249 |
+
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
|
250 |
+
image = cv2.imread(flist[frame])
|
251 |
+
frame = np.pad(image, ((bsi,bsi), (bsi,bsi), (0, 0)), 'constant', constant_values=(110, 110))
|
252 |
+
my = dets['y'][fidx] + bsi # BBox center Y
|
253 |
+
mx = dets['x'][fidx] + bsi # BBox center X
|
254 |
+
face = frame[int(my-bs):int(my+bs*(1+2*cs)),int(mx-bs*(1+cs)):int(mx+bs*(1+cs))]
|
255 |
+
vOut.write(cv2.resize(face, (224, 224)))
|
256 |
+
audioTmp = cropFile + '.wav'
|
257 |
+
audioStart = (track['frame'][0]) / 25
|
258 |
+
audioEnd = (track['frame'][-1]+1) / 25
|
259 |
+
vOut.release()
|
260 |
+
command = ("ffmpeg -y -i %s -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 -threads %d -ss %.3f -to %.3f %s -loglevel panic" % \
|
261 |
+
(video_args.audioFilePath, video_args.nDataLoaderThread, audioStart, audioEnd, audioTmp))
|
262 |
+
output = subprocess.call(command, shell=True, stdout=None) # Crop audio file
|
263 |
+
_, audio = wavfile.read(audioTmp)
|
264 |
+
command = ("ffmpeg -y -i %st.avi -i %s -threads %d -c:v copy -c:a copy %s.avi -loglevel panic" % \
|
265 |
+
(cropFile, audioTmp, video_args.nDataLoaderThread, cropFile)) # Combine audio and video file
|
266 |
+
output = subprocess.call(command, shell=True, stdout=None)
|
267 |
+
os.remove(cropFile + 't.avi')
|
268 |
+
return {'track':track, 'proc_track':dets}
|
269 |
+
|
270 |
+
|
271 |
+
def evaluate_network(files, video_args, args):
|
272 |
+
|
273 |
+
est_sources = []
|
274 |
+
for file in tqdm.tqdm(files, total = len(files)):
|
275 |
+
|
276 |
+
fileName = os.path.splitext(file.split(os.path.sep)[-1])[0] # Load audio and video
|
277 |
+
audio, _ = sf.read(os.path.join(video_args.pycropPath, fileName + '.wav'), dtype='float32')
|
278 |
+
|
279 |
+
video = cv2.VideoCapture(os.path.join(video_args.pycropPath, fileName + '.avi'))
|
280 |
+
videoFeature = []
|
281 |
+
while video.isOpened():
|
282 |
+
ret, frames = video.read()
|
283 |
+
if ret == True:
|
284 |
+
face = cv2.cvtColor(frames, cv2.COLOR_BGR2GRAY)
|
285 |
+
face = cv2.resize(face, (224,224))
|
286 |
+
face = face[int(112-(112/2)):int(112+(112/2)), int(112-(112/2)):int(112+(112/2))]
|
287 |
+
videoFeature.append(face)
|
288 |
+
else:
|
289 |
+
break
|
290 |
+
|
291 |
+
video.release()
|
292 |
+
visual = np.array(videoFeature)/255.0
|
293 |
+
visual = (visual - 0.4161)/0.1688
|
294 |
+
|
295 |
+
length = int(audio.shape[0]/16000*25)
|
296 |
+
if visual.shape[0] < length:
|
297 |
+
visual = np.pad(visual, ((0,int(length - visual.shape[0])),(0,0),(0,0)), mode = 'edge')
|
298 |
+
|
299 |
+
audio /= np.max(np.abs(audio))
|
300 |
+
audio = np.expand_dims(audio, axis=0)
|
301 |
+
visual = np.expand_dims(visual, axis=0)
|
302 |
+
|
303 |
+
inputs = (audio, visual)
|
304 |
+
est_source = decode_one_audio_AV_MossFormer2_TSE_16K(video_args.model, inputs, args)
|
305 |
+
|
306 |
+
est_sources.append(est_source)
|
307 |
+
|
308 |
+
return est_sources
|
309 |
+
|
310 |
+
def visualization(tracks, est_sources, video_args):
|
311 |
+
# CPU: visulize the result for video format
|
312 |
+
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg'))
|
313 |
+
flist.sort()
|
314 |
+
|
315 |
+
|
316 |
+
for idx, audio in enumerate(est_sources):
|
317 |
+
max_value = np.max(np.abs(audio))
|
318 |
+
if max_value >1:
|
319 |
+
audio /= max_value
|
320 |
+
sf.write(video_args.pycropPath +'/est_%s.wav' %idx, audio, 16000)
|
321 |
+
|
322 |
+
for tidx, track in enumerate(tracks):
|
323 |
+
faces = [[] for i in range(len(flist))]
|
324 |
+
for fidx, frame in enumerate(track['track']['frame'].tolist()):
|
325 |
+
faces[frame].append({'track':tidx, 's':track['proc_track']['s'][fidx], 'x':track['proc_track']['x'][fidx], 'y':track['proc_track']['y'][fidx]})
|
326 |
+
|
327 |
+
firstImage = cv2.imread(flist[0])
|
328 |
+
fw = firstImage.shape[1]
|
329 |
+
fh = firstImage.shape[0]
|
330 |
+
vOut = cv2.VideoWriter(os.path.join(video_args.pyaviPath, 'video_only.avi'), cv2.VideoWriter_fourcc(*'XVID'), 25, (fw,fh))
|
331 |
+
for fidx, fname in tqdm.tqdm(enumerate(flist), total = len(flist)):
|
332 |
+
image = cv2.imread(fname)
|
333 |
+
for face in faces[fidx]:
|
334 |
+
cv2.rectangle(image, (int(face['x']-face['s']), int(face['y']-face['s'])), (int(face['x']+face['s']), int(face['y']+face['s'])),(0,255,0),10)
|
335 |
+
vOut.write(image)
|
336 |
+
vOut.release()
|
337 |
+
|
338 |
+
command = ("ffmpeg -y -i %s -i %s -threads %d -c:v copy -c:a copy %s -loglevel panic" % \
|
339 |
+
(os.path.join(video_args.pyaviPath, 'video_only.avi'), (video_args.pycropPath +'/est_%s.wav' %tidx), \
|
340 |
+
video_args.nDataLoaderThread, os.path.join(video_args.pyaviPath,'video_out_%s.avi'%tidx)))
|
341 |
+
output = subprocess.call(command, shell=True, stdout=None)
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
command = "ffmpeg -i %s %s ;" % (
|
347 |
+
os.path.join(video_args.pyaviPath, 'video_out_%s.avi' % tidx),
|
348 |
+
os.path.join(video_args.pyaviPath, 'video_est_%s.mp4' % tidx)
|
349 |
+
)
|
350 |
+
command += f"rm {os.path.join(video_args.pyaviPath, 'video_out_%s.avi' % tidx)}"
|
351 |
+
output = subprocess.call(command, shell=True, stdout=None)
|
352 |
+
|
353 |
+
|
354 |
+
command = "ffmpeg -i %s %s ;" % (
|
355 |
+
os.path.join(video_args.pyaviPath, 'video.avi'),
|
356 |
+
os.path.join(video_args.pyaviPath, 'video_orig.mp4')
|
357 |
+
)
|
358 |
+
command += f"rm {os.path.join(video_args.pyaviPath, 'video_only.avi')} ;"
|
359 |
+
command += f"rm {os.path.join(video_args.pyaviPath, 'video.avi')} ;"
|
360 |
+
command += f"rm {os.path.join(video_args.pyaviPath, 'audio.wav')} ;"
|
361 |
+
output = subprocess.call(command, shell=True, stdout=None)
|