Spaces:
Running
on
Zero
Running
on
Zero
alibabasglab
commited on
Delete networks.py
Browse files- networks.py +0 -490
networks.py
DELETED
@@ -1,490 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Authors: Shengkui Zhao, Zexu Pan
|
3 |
-
"""
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import soundfile as sf
|
7 |
-
import os
|
8 |
-
import subprocess
|
9 |
-
from tqdm import tqdm
|
10 |
-
from utils.decode import decode_one_audio
|
11 |
-
from dataloader.dataloader import DataReader
|
12 |
-
|
13 |
-
class SpeechModel:
|
14 |
-
"""
|
15 |
-
The SpeechModel class is a base class designed to handle speech processing tasks,
|
16 |
-
such as loading, processing, and decoding audio data. It initializes the computational
|
17 |
-
device (CPU or GPU) and holds model-related attributes. The class is flexible and intended
|
18 |
-
to be extended by specific speech models for tasks like speech enhancement, speech separation,
|
19 |
-
target speaker extraction etc.
|
20 |
-
|
21 |
-
Attributes:
|
22 |
-
- args: Argument parser object that contains configuration settings.
|
23 |
-
- device: The device (CPU or GPU) on which the model will run.
|
24 |
-
- model: The actual model used for speech processing tasks (to be loaded by subclasses).
|
25 |
-
- name: A placeholder for the model's name.
|
26 |
-
- data: A dictionary to store any additional data related to the model, such as audio input.
|
27 |
-
"""
|
28 |
-
|
29 |
-
def __init__(self, args):
|
30 |
-
"""
|
31 |
-
Initializes the SpeechModel class by determining the computation device
|
32 |
-
(GPU or CPU) to be used for running the model, based on system availability.
|
33 |
-
|
34 |
-
Args:
|
35 |
-
- args: Argument parser object containing settings like whether to use CUDA (GPU) or not.
|
36 |
-
"""
|
37 |
-
# Check if a GPU is available
|
38 |
-
"""
|
39 |
-
if torch.cuda.is_available():
|
40 |
-
# Find the GPU with the most free memory using a custom method
|
41 |
-
free_gpu_id = self.get_free_gpu()
|
42 |
-
if free_gpu_id is not None:
|
43 |
-
args.use_cuda = 1
|
44 |
-
torch.cuda.set_device(free_gpu_id)
|
45 |
-
print(f'use GPU: {free_gpu_id}')
|
46 |
-
self.device = torch.device('cuda')
|
47 |
-
else:
|
48 |
-
# If no GPU is detected, use the CPU
|
49 |
-
#print("No GPU found. Using CPU.")
|
50 |
-
args.use_cuda = 0
|
51 |
-
self.device = torch.device('cpu')
|
52 |
-
else:
|
53 |
-
# If no GPU is detected, use the CPU
|
54 |
-
args.use_cuda = 0
|
55 |
-
self.device = torch.device('cpu')
|
56 |
-
"""
|
57 |
-
if torch.cuda.is_available():
|
58 |
-
print('GPU is found and used!')
|
59 |
-
self.device = torch.device('cuda')
|
60 |
-
else:
|
61 |
-
# If no GPU is detected, use the CPU
|
62 |
-
args.use_cuda = 0
|
63 |
-
self.device = torch.device('cpu')
|
64 |
-
|
65 |
-
self.args = args
|
66 |
-
self.model = None
|
67 |
-
self.name = None
|
68 |
-
self.data = {}
|
69 |
-
|
70 |
-
def get_free_gpu(self):
|
71 |
-
"""
|
72 |
-
Identifies the GPU with the most free memory using 'nvidia-smi' and returns its index.
|
73 |
-
|
74 |
-
This function queries the available GPUs on the system and determines which one has
|
75 |
-
the highest amount of free memory. It uses the `nvidia-smi` command-line tool to gather
|
76 |
-
GPU memory usage data. If successful, it returns the index of the GPU with the most free memory.
|
77 |
-
If the query fails or an error occurs, it returns None.
|
78 |
-
|
79 |
-
Returns:
|
80 |
-
int: Index of the GPU with the most free memory, or None if no GPU is found or an error occurs.
|
81 |
-
"""
|
82 |
-
try:
|
83 |
-
# Run nvidia-smi to query GPU memory usage and free memory
|
84 |
-
result = subprocess.run(['nvidia-smi', '--query-gpu=memory.used,memory.free', '--format=csv,nounits,noheader'], stdout=subprocess.PIPE)
|
85 |
-
gpu_info = result.stdout.decode('utf-8').strip().split('\n')
|
86 |
-
|
87 |
-
free_gpu = None
|
88 |
-
max_free_memory = 0
|
89 |
-
for i, info in enumerate(gpu_info):
|
90 |
-
used, free = map(int, info.split(','))
|
91 |
-
if free > max_free_memory:
|
92 |
-
max_free_memory = free
|
93 |
-
free_gpu = i
|
94 |
-
return free_gpu
|
95 |
-
except Exception as e:
|
96 |
-
print(f"Error finding free GPU: {e}")
|
97 |
-
return None
|
98 |
-
|
99 |
-
def load_model(self):
|
100 |
-
"""
|
101 |
-
Loads a pre-trained model checkpoint from a specified directory. It checks for
|
102 |
-
the best model ('last_best_checkpoint') or the most recent checkpoint ('last_checkpoint')
|
103 |
-
in the checkpoint directory. If a model is found, it loads the model state into the
|
104 |
-
current model instance.
|
105 |
-
|
106 |
-
If no checkpoint is found, it prints a warning message.
|
107 |
-
|
108 |
-
Steps:
|
109 |
-
- Search for the best model checkpoint or the most recent one.
|
110 |
-
- Load the model's state dictionary from the checkpoint file.
|
111 |
-
|
112 |
-
Raises:
|
113 |
-
- FileNotFoundError: If neither 'last_best_checkpoint' nor 'last_checkpoint' files are found.
|
114 |
-
"""
|
115 |
-
# Define paths for the best model and the last checkpoint
|
116 |
-
best_name = os.path.join(self.args.checkpoint_dir, 'last_best_checkpoint')
|
117 |
-
ckpt_name = os.path.join(self.args.checkpoint_dir, 'last_checkpoint')
|
118 |
-
|
119 |
-
# Check if the best checkpoint or last checkpoint exists
|
120 |
-
if os.path.isfile(best_name):
|
121 |
-
name = best_name # Prioritize loading the best model
|
122 |
-
elif os.path.isfile(ckpt_name):
|
123 |
-
name = ckpt_name # Otherwise, load the last saved checkpoint
|
124 |
-
else:
|
125 |
-
# If no checkpoint exists, print a warning and exit the function
|
126 |
-
print('Warning: No existing checkpoint or best model found!')
|
127 |
-
return
|
128 |
-
|
129 |
-
# Read the model's checkpoint name from the file
|
130 |
-
with open(name, 'r') as f:
|
131 |
-
model_name = f.readline().strip()
|
132 |
-
|
133 |
-
# Form the full path to the model's checkpoint
|
134 |
-
checkpoint_path = os.path.join(self.args.checkpoint_dir, model_name)
|
135 |
-
|
136 |
-
# Load the checkpoint file into memory (map_location ensures compatibility with different devices)
|
137 |
-
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
|
138 |
-
|
139 |
-
# Load the model's state dictionary (weights and biases) into the current model
|
140 |
-
'''
|
141 |
-
if 'model' in checkpoint:
|
142 |
-
# If the checkpoint contains a 'model' key, load the corresponding state dictionary
|
143 |
-
if self.args.task =='target_speaker_extraction':
|
144 |
-
pretrained_model = checkpoint['model']
|
145 |
-
state = self.model.state_dict()
|
146 |
-
for key in state.keys():
|
147 |
-
pretrain_key = 'module.' + key
|
148 |
-
state[key] = pretrained_model[pretrain_key]
|
149 |
-
self.model.load_state_dict(state, strict=True)
|
150 |
-
else:
|
151 |
-
self.model.load_state_dict(checkpoint['model'], strict=False)
|
152 |
-
else:
|
153 |
-
# If the checkpoint is a plain state dictionary, load it directly
|
154 |
-
self.model.load_state_dict(checkpoint, strict=False)
|
155 |
-
'''
|
156 |
-
if 'model' in checkpoint:
|
157 |
-
pretrained_model = checkpoint['model']
|
158 |
-
else:
|
159 |
-
pretrained_model = checkpoint
|
160 |
-
state = self.model.state_dict()
|
161 |
-
for key in state.keys():
|
162 |
-
if key in pretrained_model and state[key].shape == pretrained_model[key].shape:
|
163 |
-
state[key] = pretrained_model[key]
|
164 |
-
elif key.replace('module.', '') in pretrained_model and state[key].shape == pretrained_model[key.replace('module.', '')].shape:
|
165 |
-
state[key] = pretrained_model[key.replace('module.', '')]
|
166 |
-
elif 'module.'+key in pretrained_model and state[key].shape == pretrained_model['module.'+key].shape:
|
167 |
-
state[key] = pretrained_model['module.'+key]
|
168 |
-
elif self.print: print(f'{key} not loaded')
|
169 |
-
self.model.load_state_dict(state)
|
170 |
-
print(f'Successfully loaded {model_name} for decoding')
|
171 |
-
|
172 |
-
def decode(self):
|
173 |
-
"""
|
174 |
-
Decodes the input audio data using the loaded model and ensures the output matches the original audio length.
|
175 |
-
|
176 |
-
This method processes the audio through a speech model (e.g., for enhancement, separation, etc.),
|
177 |
-
and truncates the resulting audio to match the original input's length. The method supports multiple speakers
|
178 |
-
if the model handles multi-speaker audio.
|
179 |
-
|
180 |
-
Returns:
|
181 |
-
output_audio: The decoded audio after processing, truncated to the input audio length.
|
182 |
-
If multi-speaker audio is processed, a list of truncated audio outputs per speaker is returned.
|
183 |
-
"""
|
184 |
-
# Decode the audio using the loaded model on the given device (e.g., CPU or GPU)
|
185 |
-
output_audio = decode_one_audio(self.model, self.device, self.data['audio'], self.args)
|
186 |
-
|
187 |
-
# Ensure the decoded output matches the length of the input audio
|
188 |
-
if isinstance(output_audio, list):
|
189 |
-
# If multi-speaker audio (a list of outputs), truncate each speaker's audio to input length
|
190 |
-
for spk in range(self.args.num_spks):
|
191 |
-
output_audio[spk] = output_audio[spk][:self.data['audio_len']]
|
192 |
-
else:
|
193 |
-
# Single output, truncate to input audio length
|
194 |
-
output_audio = output_audio[:self.data['audio_len']]
|
195 |
-
|
196 |
-
return output_audio
|
197 |
-
|
198 |
-
def process(self, input_path, online_write=False, output_path=None):
|
199 |
-
"""
|
200 |
-
Load and process audio files from the specified input path. Optionally,
|
201 |
-
write the output audio files to the specified output directory.
|
202 |
-
|
203 |
-
Args:
|
204 |
-
input_path (str): Path to the input audio files or folder.
|
205 |
-
online_write (bool): Whether to write the processed audio to disk in real-time.
|
206 |
-
output_path (str): Optional path for writing output files. If None, output
|
207 |
-
will be stored in self.result.
|
208 |
-
|
209 |
-
Returns:
|
210 |
-
dict or ndarray: Processed audio results either as a dictionary or as a single array,
|
211 |
-
depending on the number of audio files processed.
|
212 |
-
Returns None if online_write is enabled.
|
213 |
-
"""
|
214 |
-
|
215 |
-
self.result = {}
|
216 |
-
self.args.input_path = input_path
|
217 |
-
data_reader = DataReader(self.args) # Initialize a data reader to load the audio files
|
218 |
-
|
219 |
-
|
220 |
-
# Check if online writing is enabled
|
221 |
-
if online_write:
|
222 |
-
output_wave_dir = self.args.output_dir # Set the default output directory
|
223 |
-
if isinstance(output_path, str): # If a specific output path is provided, use it
|
224 |
-
output_wave_dir = os.path.join(output_path, self.name)
|
225 |
-
# Create the output directory if it does not exist
|
226 |
-
if not os.path.isdir(output_wave_dir):
|
227 |
-
os.makedirs(output_wave_dir)
|
228 |
-
|
229 |
-
num_samples = len(data_reader) # Get the total number of samples to process
|
230 |
-
print(f'Running {self.name} ...') # Display the model being used
|
231 |
-
|
232 |
-
if self.args.task == 'target_speaker_extraction':
|
233 |
-
from utils.video_process import process_tse
|
234 |
-
assert online_write == True
|
235 |
-
process_tse(self.args, self.model, self.device, data_reader, output_wave_dir)
|
236 |
-
else:
|
237 |
-
# Disable gradient calculation for better efficiency during inference
|
238 |
-
with torch.no_grad():
|
239 |
-
for idx in tqdm(range(num_samples)): # Loop over all audio samples
|
240 |
-
self.data = {}
|
241 |
-
# Read the audio, waveform ID, and audio length from the data reader
|
242 |
-
input_audio, wav_id, input_len, scalar = data_reader[idx]
|
243 |
-
# Store the input audio and metadata in self.data
|
244 |
-
self.data['audio'] = input_audio
|
245 |
-
self.data['id'] = wav_id
|
246 |
-
self.data['audio_len'] = input_len
|
247 |
-
|
248 |
-
# Perform the audio decoding/processing
|
249 |
-
output_audio = self.decode()
|
250 |
-
|
251 |
-
#if isinstance(output_audio, list):
|
252 |
-
# for spk in range(self.args.num_spks):
|
253 |
-
# output_audio[spk] = output_audio[spk] * scalar
|
254 |
-
#else:
|
255 |
-
#if not isinstance(output_audio, list):
|
256 |
-
if self.args.network == 'FRCRN_SE_16K':
|
257 |
-
output_audio = output_audio * scalar
|
258 |
-
|
259 |
-
if online_write:
|
260 |
-
# If online writing is enabled, save the output audio to files
|
261 |
-
if isinstance(output_audio, list):
|
262 |
-
# In case of multi-speaker output, save each speaker's output separately
|
263 |
-
for spk in range(self.args.num_spks):
|
264 |
-
output_file = os.path.join(output_wave_dir, wav_id.replace('.wav', f'_s{spk+1}.wav'))
|
265 |
-
sf.write(output_file, output_audio[spk], self.args.sampling_rate)
|
266 |
-
else:
|
267 |
-
# Single-speaker or standard output
|
268 |
-
output_file = os.path.join(output_wave_dir, wav_id)
|
269 |
-
sf.write(output_file, output_audio, self.args.sampling_rate)
|
270 |
-
else:
|
271 |
-
# If not writing to disk, store the output in the result dictionary
|
272 |
-
self.result[wav_id] = output_audio
|
273 |
-
|
274 |
-
# Return the processed results if not writing to disk
|
275 |
-
if not online_write:
|
276 |
-
if len(self.result) == 1:
|
277 |
-
# If there is only one result, return it directly
|
278 |
-
return next(iter(self.result.values()))
|
279 |
-
else:
|
280 |
-
# Otherwise, return the entire result dictionary
|
281 |
-
return self.result
|
282 |
-
|
283 |
-
|
284 |
-
def write(self, output_path, add_subdir=False, use_key=False):
|
285 |
-
"""
|
286 |
-
Write the processed audio results to the specified output path.
|
287 |
-
|
288 |
-
Args:
|
289 |
-
output_path (str): The directory or file path where processed audio will be saved. If not
|
290 |
-
provided, defaults to self.args.output_dir.
|
291 |
-
add_subdir (bool): If True, appends the model name as a subdirectory to the output path.
|
292 |
-
use_key (bool): If True, uses the result dictionary's keys (audio file IDs) for filenames.
|
293 |
-
|
294 |
-
Returns:
|
295 |
-
None: Outputs are written to disk, no data is returned.
|
296 |
-
"""
|
297 |
-
|
298 |
-
# Ensure the output path is a string. If not provided, use the default output directory
|
299 |
-
if not isinstance(output_path, str):
|
300 |
-
output_path = self.args.output_dir
|
301 |
-
|
302 |
-
# If add_subdir is enabled, create a subdirectory for the model name
|
303 |
-
if add_subdir:
|
304 |
-
if os.path.isfile(output_path):
|
305 |
-
print(f'File exists: {output_path}, remove it and try again!')
|
306 |
-
return
|
307 |
-
output_path = os.path.join(output_path, self.name)
|
308 |
-
if not os.path.isdir(output_path):
|
309 |
-
os.makedirs(output_path)
|
310 |
-
|
311 |
-
# Ensure proper directory setup when using keys for filenames
|
312 |
-
if use_key and not os.path.isdir(output_path):
|
313 |
-
if os.path.exists(output_path):
|
314 |
-
print(f'File exists: {output_path}, remove it and try again!')
|
315 |
-
return
|
316 |
-
os.makedirs(output_path)
|
317 |
-
# If not using keys and output path is a directory, check for conflicts
|
318 |
-
if not use_key and os.path.isdir(output_path):
|
319 |
-
print(f'Directory exists: {output_path}, remove it and try again!')
|
320 |
-
return
|
321 |
-
|
322 |
-
# Iterate over the results dictionary to write the processed audio to disk
|
323 |
-
for key in self.result:
|
324 |
-
if use_key:
|
325 |
-
# If using keys, format filenames based on the result dictionary's keys (audio IDs)
|
326 |
-
if isinstance(self.result[key], list): # For multi-speaker outputs
|
327 |
-
for spk in range(self.args.num_spks):
|
328 |
-
sf.write(os.path.join(output_path, key.replace('.wav', f'_s{spk+1}.wav')),
|
329 |
-
self.result[key][spk], self.args.sampling_rate)
|
330 |
-
else:
|
331 |
-
sf.write(os.path.join(output_path, key), self.result[key], self.args.sampling_rate)
|
332 |
-
else:
|
333 |
-
# If not using keys, write audio to the specified output path directly
|
334 |
-
if isinstance(self.result[key], list): # For multi-speaker outputs
|
335 |
-
for spk in range(self.args.num_spks):
|
336 |
-
sf.write(output_path.replace('.wav', f'_s{spk+1}.wav'),
|
337 |
-
self.result[key][spk], self.args.sampling_rate)
|
338 |
-
else:
|
339 |
-
sf.write(output_path, self.result[key], self.args.sampling_rate)
|
340 |
-
|
341 |
-
# The model classes for specific sub-tasks
|
342 |
-
|
343 |
-
class CLS_FRCRN_SE_16K(SpeechModel):
|
344 |
-
"""
|
345 |
-
A subclass of SpeechModel that implements a speech enhancement model using
|
346 |
-
the FRCRN architecture for 16 kHz speech enhancement.
|
347 |
-
|
348 |
-
Args:
|
349 |
-
args (Namespace): The argument parser containing model configurations and paths.
|
350 |
-
"""
|
351 |
-
|
352 |
-
def __init__(self, args):
|
353 |
-
# Initialize the parent SpeechModel class
|
354 |
-
super(CLS_FRCRN_SE_16K, self).__init__(args)
|
355 |
-
|
356 |
-
# Import the FRCRN speech enhancement model for 16 kHz
|
357 |
-
from models.frcrn_se.frcrn import FRCRN_SE_16K
|
358 |
-
|
359 |
-
# Initialize the model
|
360 |
-
self.model = FRCRN_SE_16K(args).model
|
361 |
-
self.name = 'FRCRN_SE_16K'
|
362 |
-
|
363 |
-
# Load pre-trained model checkpoint
|
364 |
-
self.load_model()
|
365 |
-
|
366 |
-
# Move model to the appropriate device (GPU/CPU)
|
367 |
-
self.model.to(self.device)
|
368 |
-
|
369 |
-
# Set the model to evaluation mode (no gradient calculation)
|
370 |
-
self.model.eval()
|
371 |
-
|
372 |
-
class CLS_MossFormer2_SE_48K(SpeechModel):
|
373 |
-
"""
|
374 |
-
A subclass of SpeechModel that implements the MossFormer2 architecture for
|
375 |
-
48 kHz speech enhancement.
|
376 |
-
|
377 |
-
Args:
|
378 |
-
args (Namespace): The argument parser containing model configurations and paths.
|
379 |
-
"""
|
380 |
-
|
381 |
-
def __init__(self, args):
|
382 |
-
# Initialize the parent SpeechModel class
|
383 |
-
super(CLS_MossFormer2_SE_48K, self).__init__(args)
|
384 |
-
|
385 |
-
# Import the MossFormer2 speech enhancement model for 48 kHz
|
386 |
-
from models.mossformer2_se.mossformer2_se_wrapper import MossFormer2_SE_48K
|
387 |
-
|
388 |
-
# Initialize the model
|
389 |
-
self.model = MossFormer2_SE_48K(args).model
|
390 |
-
self.name = 'MossFormer2_SE_48K'
|
391 |
-
|
392 |
-
# Load pre-trained model checkpoint
|
393 |
-
self.load_model()
|
394 |
-
|
395 |
-
# Move model to the appropriate device (GPU/CPU)
|
396 |
-
self.model.to(self.device)
|
397 |
-
|
398 |
-
# Set the model to evaluation mode (no gradient calculation)
|
399 |
-
self.model.eval()
|
400 |
-
|
401 |
-
class CLS_MossFormerGAN_SE_16K(SpeechModel):
|
402 |
-
"""
|
403 |
-
A subclass of SpeechModel that implements the MossFormerGAN architecture for
|
404 |
-
16 kHz speech enhancement, utilizing GAN-based speech processing.
|
405 |
-
|
406 |
-
Args:
|
407 |
-
args (Namespace): The argument parser containing model configurations and paths.
|
408 |
-
"""
|
409 |
-
|
410 |
-
def __init__(self, args):
|
411 |
-
# Initialize the parent SpeechModel class
|
412 |
-
super(CLS_MossFormerGAN_SE_16K, self).__init__(args)
|
413 |
-
|
414 |
-
# Import the MossFormerGAN speech enhancement model for 16 kHz
|
415 |
-
from models.mossformer_gan_se.generator import MossFormerGAN_SE_16K
|
416 |
-
|
417 |
-
# Initialize the model
|
418 |
-
self.model = MossFormerGAN_SE_16K(args).model
|
419 |
-
self.name = 'MossFormerGAN_SE_16K'
|
420 |
-
|
421 |
-
# Load pre-trained model checkpoint
|
422 |
-
self.load_model()
|
423 |
-
|
424 |
-
# Move model to the appropriate device (GPU/CPU)
|
425 |
-
self.model.to(self.device)
|
426 |
-
|
427 |
-
# Set the model to evaluation mode (no gradient calculation)
|
428 |
-
self.model.eval()
|
429 |
-
|
430 |
-
class CLS_MossFormer2_SS_16K(SpeechModel):
|
431 |
-
"""
|
432 |
-
A subclass of SpeechModel that implements the MossFormer2 architecture for
|
433 |
-
16 kHz speech separation.
|
434 |
-
|
435 |
-
Args:
|
436 |
-
args (Namespace): The argument parser containing model configurations and paths.
|
437 |
-
"""
|
438 |
-
|
439 |
-
def __init__(self, args):
|
440 |
-
# Initialize the parent SpeechModel class
|
441 |
-
super(CLS_MossFormer2_SS_16K, self).__init__(args)
|
442 |
-
|
443 |
-
# Import the MossFormer2 speech separation model for 16 kHz
|
444 |
-
from models.mossformer2_ss.mossformer2 import MossFormer2_SS_16K
|
445 |
-
|
446 |
-
# Initialize the model
|
447 |
-
self.model = MossFormer2_SS_16K(args).model
|
448 |
-
self.name = 'MossFormer2_SS_16K'
|
449 |
-
|
450 |
-
# Load pre-trained model checkpoint
|
451 |
-
self.load_model()
|
452 |
-
|
453 |
-
# Move model to the appropriate device (GPU/CPU)
|
454 |
-
self.model.to(self.device)
|
455 |
-
|
456 |
-
# Set the model to evaluation mode (no gradient calculation)
|
457 |
-
self.model.eval()
|
458 |
-
|
459 |
-
|
460 |
-
class CLS_AV_MossFormer2_TSE_16K(SpeechModel):
|
461 |
-
"""
|
462 |
-
A subclass of SpeechModel that implements an audio-visual (AV) model using
|
463 |
-
the AV-MossFormer2 architecture for target speaker extraction (TSE) at 16 kHz.
|
464 |
-
This model leverages both audio and visual cues to perform speaker extraction.
|
465 |
-
|
466 |
-
Args:
|
467 |
-
args (Namespace): The argument parser containing model configurations and paths.
|
468 |
-
"""
|
469 |
-
|
470 |
-
def __init__(self, args):
|
471 |
-
# Initialize the parent SpeechModel class
|
472 |
-
super(CLS_AV_MossFormer2_TSE_16K, self).__init__(args)
|
473 |
-
|
474 |
-
# Import the AV-MossFormer2 model for 16 kHz target speech enhancement
|
475 |
-
from models.av_mossformer2_tse.av_mossformer2 import AV_MossFormer2_TSE_16K
|
476 |
-
|
477 |
-
# Initialize the model
|
478 |
-
self.model = AV_MossFormer2_TSE_16K(args).model
|
479 |
-
self.name = 'AV_MossFormer2_TSE_16K'
|
480 |
-
|
481 |
-
# Load pre-trained model checkpoint
|
482 |
-
self.load_model()
|
483 |
-
|
484 |
-
# Move model to the appropriate device (GPU/CPU)
|
485 |
-
self.model.to(self.device)
|
486 |
-
|
487 |
-
# Set the model to evaluation mode (no gradient calculation)
|
488 |
-
self.model.eval()
|
489 |
-
|
490 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|