import numpy as np import math, os, csv import torchaudio import torch import torch.nn as nn import torch.utils.data as data import torch.distributed as dist import soundfile as sf from torch.utils.data import Dataset import torch.utils.data as data import os import sys sys.path.append(os.path.dirname(__file__)) from pydub import AudioSegment from dataloader.misc import read_and_config_file, get_file_extension import librosa import random EPS = 1e-6 MAX_WAV_VALUE_16B = 32768.0 MAX_WAV_VALUE_32B = 2147483648.0 def audioread_archieved(path, sampling_rate): """ Reads an audio file from the specified path, normalizes the audio, resamples it to the desired sampling rate (if necessary), and ensures it is single-channel. Parameters: path (str): The file path of the audio file to be read. sampling_rate (int): The target sampling rate for the audio. Returns: numpy.ndarray: The processed audio data, normalized, resampled (if necessary), and converted to mono (if the input audio has multiple channels). """ # Read audio data and its sample rate from the file. data, fs = sf.read(path) # convert to mono channel if len(data.shape) >1: if data.shape[0] > data.shape[1]: data = data[:, 0] else: data = data[0, :] # Normalize the audio data. data, scalar = audio_norm(data) # Resample the audio if the sample rate is different from the target sampling rate. if fs != sampling_rate: data = librosa.resample(data, orig_sr=fs, target_sr=sampling_rate) # Convert to mono by selecting the first channel if the audio has multiple channels. if len(data.shape) > 1: data = data[:, 0] # Return the processed audio data. return data, scalar def read_audio(file_path): """ Use AudioSegment to load audio from all supported audio input format """ try: audio = AudioSegment.from_file(file_path) return audio except Exception as e: print(f"Error loading file: {e}") return None def audioread(path, sampling_rate, use_norm): """ Reads an audio file from the specified path, normalizes the audio, resamples it to the desired sampling rate (if necessary), and ensures it is single-channel. Parameters: path (str): The file path of the audio file to be read. sampling_rate (int): The target sampling rate for the audio. use_norm (bool): The flag for specifying whether using input audio normalization Returns: numpy.ndarray: The processed audio data, normalized, resampled (if necessary), and converted to mono (if the input audio has multiple channels). """ # Read audio data and its sample rate from the file. audio_info = {} ext = get_file_extension(path).replace('.', '') audio_info['ext']=ext try: data = AudioSegment.from_file(path) except Exception as e: print(f"Error loading file: {e}") return None data = read_audio(path) audio_info['sample_rate'] = data.frame_rate audio_info['channels'] = data.channels audio_info['sample_width'] = data.sample_width data_array = np.array(data.get_array_of_samples()) if max(data_array) > MAX_WAV_VALUE_16B: audio_np = data_array / MAX_WAV_VALUE_32B else: audio_np = data_array / MAX_WAV_VALUE_16B audios = [] # Check if the audio is stereo if audio_info['channels'] == 2: audios.append(audio_np[::2]) # Even indices (left channel) audios.append(audio_np[1::2]) # Odd indices (right channel) else: audios.append(audio_np) # Normalize the audio data. audios_normed = [] scalars = [] for audio in audios: if use_norm: audio_normed, scalar = audio_norm(audio) audios_normed.append(audio_normed) scalars.append(scalar) else: audios_normed.append(audio) scalars.append(1) # Resample the audio if the sample rate is different from the target sampling rate. if audio_info['sample_rate'] != sampling_rate: index = 0 for audio_normed in audios_normed: audios_normed[index] = librosa.resample(audio_normed, orig_sr=audio_info['sample_rate'], target_sr=sampling_rate) index = index + 1 # Return the processed audio data. return audios_normed, scalars, audio_info def audio_norm(x): """ Normalizes the input audio signal to a target Root Mean Square (RMS) level, applying two stages of scaling. This ensures the audio signal is neither too quiet nor too loud, keeping its amplitude consistent. Parameters: x (numpy.ndarray): Input audio signal to be normalized. Returns: numpy.ndarray: Normalized audio signal. """ # Compute the root mean square (RMS) of the input audio signal. rms = (x ** 2).mean() ** 0.5 # Calculate the scalar to adjust the signal to the target level (-25 dB). scalar = 10 ** (-25 / 20) / (rms + EPS) # Scale the input audio by the computed scalar. x = x * scalar # Compute the power of the scaled audio signal. pow_x = x ** 2 # Calculate the average power of the audio signal. avg_pow_x = pow_x.mean() # Compute RMS only for audio segments with higher-than-average power. rmsx = pow_x[pow_x > avg_pow_x].mean() ** 0.5 # Calculate another scalar to further normalize based on higher-power segments. scalarx = 10 ** (-25 / 20) / (rmsx + EPS) # Apply the second scalar to the audio. x = x * scalarx # Return the doubly normalized audio signal. return x, 1/(scalar * scalarx + EPS) class DataReader(object): """ A class for reading audio data from a list of files, normalizing it, and extracting features for further processing. It supports extracting features from each file, reshaping the data, and returning metadata like utterance ID and data length. Parameters: args: Arguments containing the input path and target sampling rate. Attributes: file_list (list): A list of audio file paths to process. sampling_rate (int): The target sampling rate for audio files. """ def __init__(self, args): # Read and configure the file list from the input path provided in the arguments. # The file list is decoded, if necessary. self.file_list = read_and_config_file(args, args.input_path, decode=True) # Store the target sampling rate. self.sampling_rate = args.sampling_rate # Store the args file self.args = args def __len__(self): """ Returns the number of audio files in the file list. Returns: int: Number of files to process. """ return len(self.file_list) def __getitem__(self, index): """ Retrieves the features of the audio file at the given index. Parameters: index (int): Index of the file in the file list. Returns: tuple: Features (inputs, utterance ID, data length) for the selected audio file. """ if self.args.task == 'target_speaker_extraction': if self.args.network_reference.cue== 'lip': return self.file_list[index] return self.extract_feature(self.file_list[index]) def extract_feature(self, path): """ Extracts features from the given audio file path. Parameters: path (str): The file path of the audio file. Returns: inputs (numpy.ndarray): Reshaped audio data for further processing. utt_id (str): The unique identifier of the audio file, usually the filename. length (int): The length of the original audio data. """ # Extract the utterance ID from the file path (usually the filename). utt_id = path.split('/')[-1] use_norm = False #We suggest to use norm for 'FRCRN_SE_16K' and 'MossFormer2_SS_16K' models if self.args.network in ['FRCRN_SE_16K','MossFormer2_SS_16K'] : use_norm = True # Read and normalize the audio data, converting it to float32 for processing. audios_norm, scalars, audio_info = audioread(path, self.sampling_rate, use_norm) if self.args.network in ['MossFormer2_SR_48K']: audio_info['sample_rate'] = self.sampling_rate for i in range(len(audios_norm)): audios_norm[i] = audios_norm[i].astype(np.float32) # Reshape the data to ensure it's in the format [1, data_length]. audios_norm[i] = np.reshape(audios_norm[i], [1, audios_norm[i].shape[0]]) # Return the reshaped audio data, utterance ID, and the length of the original data. return audios_norm, utt_id, audios_norm[0].shape[1], scalars, audio_info class Wave_Processor(object): """ A class for processing audio data, specifically for reading input and label audio files, segmenting them into fixed-length segments, and applying padding or trimming as necessary. Methods: process(path, segment_length, sampling_rate): Processes audio data by reading, padding, or segmenting it to match the specified segment length. Parameters: path (dict): A dictionary containing file paths for 'inputs' and 'labels' audio files. segment_length (int): The desired length of audio segments to extract. sampling_rate (int): The target sampling rate for reading the audio files. """ def process(self, path, segment_length, sampling_rate): """ Reads input and label audio files, and ensures the audio is segmented into the desired length, padding if necessary or extracting random segments if the audio is longer than the target segment length. Parameters: path (dict): Dictionary containing the paths to 'inputs' and 'labels' audio files. segment_length (int): Desired length of the audio segment in samples. sampling_rate (int): Target sample rate for the audio. Returns: tuple: A pair of numpy arrays representing the processed input and label audio, either padded to the segment length or trimmed. """ # Read the input and label audio files using the target sampling rate. wave_inputs = audioread(path['inputs'], sampling_rate) wave_labels = audioread(path['labels'], sampling_rate) # Get the length of the label audio (assumed both inputs and labels have similar lengths). len_wav = wave_labels.shape[0] # If the input audio is shorter than the desired segment length, pad it with zeros. if wave_inputs.shape[0] < segment_length: # Create zero-padded arrays for inputs and labels. padded_inputs = np.zeros(segment_length, dtype=np.float32) padded_labels = np.zeros(segment_length, dtype=np.float32) # Copy the original audio into the padded arrays. padded_inputs[:wave_inputs.shape[0]] = wave_inputs padded_labels[:wave_labels.shape[0]] = wave_labels else: # Randomly select a start index for segmenting the audio if it's longer than the segment length. st_idx = random.randint(0, len_wav - segment_length) # Extract a segment of the desired length from the inputs and labels. padded_inputs = wave_inputs[st_idx:st_idx + segment_length] padded_labels = wave_labels[st_idx:st_idx + segment_length] # Return the processed (padded or segmented) input and label audio. return padded_inputs, padded_labels class Fbank_Processor(object): """ A class for processing input audio data into mel-filterbank (Fbank) features, including the computation of delta and delta-delta features. Methods: process(inputs, args): Processes the raw audio input and returns the mel-filterbank features along with delta and delta-delta features. """ def process(self, inputs, args): # Convert frame length and shift from seconds to milliseconds. frame_length = int(args.win_len / args.sampling_rate * 1000) frame_shift = int(args.win_inc / args.sampling_rate * 1000) # Set up configuration for the mel-filterbank computation. fbank_config = { "dither": 1.0, "frame_length": frame_length, "frame_shift": frame_shift, "num_mel_bins": args.num_mels, "sample_frequency": args.sampling_rate, "window_type": args.win_type } # Convert the input audio to a FloatTensor and scale it to match the expected input range. inputs = torch.FloatTensor(inputs * MAX_WAV_VALUE) # Compute the mel-filterbank features using Kaldi's fbank function. fbank = torchaudio.compliance.kaldi.fbank(inputs.unsqueeze(0), **fbank_config) # Add delta and delta-delta features. fbank_tr = torch.transpose(fbank, 0, 1) fbank_delta = torchaudio.functional.compute_deltas(fbank_tr) fbank_delta_delta = torchaudio.functional.compute_deltas(fbank_delta) fbank_delta = torch.transpose(fbank_delta, 0, 1) fbank_delta_delta = torch.transpose(fbank_delta_delta, 0, 1) # Concatenate the original Fbank, delta, and delta-delta features. fbanks = torch.cat([fbank, fbank_delta, fbank_delta_delta], dim=1) return fbanks.numpy() class AudioDataset(Dataset): """ A dataset class for loading and processing audio data from different data types (train, validation, test). Supports audio processing and feature extraction (e.g., waveform processing, Fbank feature extraction). Parameters: args: Arguments containing dataset configuration (paths, sampling rate, etc.). data_type (str): The type of data to load (train, val, test). """ def __init__(self, args, data_type): self.args = args self.sampling_rate = args.sampling_rate # Read the list of audio files based on the data type. if data_type == 'train': self.wav_list = read_and_config_file(args.tr_list) elif data_type == 'val': self.wav_list = read_and_config_file(args.cv_list) elif data_type == 'test': self.wav_list = read_and_config_file(args.tt_list) else: print(f'Data type: {data_type} is unknown!') # Initialize processors for waveform and Fbank features. self.wav_processor = Wave_Processor() self.fbank_processor = Fbank_Processor() # Clip data to a fixed segment length based on the sampling rate and max length. self.segment_length = self.sampling_rate * self.args.max_length print(f'No. {data_type} files: {len(self.wav_list)}') def __len__(self): # Return the number of audio files in the dataset. return len(self.wav_list) def __getitem__(self, index): # Get the input and label paths from the list. data_info = self.wav_list[index] # Process the waveform inputs and labels. inputs, labels = self.wav_processor.process( {'inputs': data_info['inputs'], 'labels': data_info['labels']}, self.segment_length, self.sampling_rate ) # Optionally load Fbank features if specified. if self.args.load_fbank is not None: fbanks = self.fbank_processor.process(inputs, self.args) return inputs * MAX_WAV_VALUE, labels * MAX_WAV_VALUE, fbanks return inputs, labels def zero_pad_concat(self, inputs): """ Concatenates a list of input arrays, applying zero-padding as needed to ensure they all match the length of the longest input. Parameters: inputs (list of numpy arrays): List of input arrays to be concatenated. Returns: numpy.ndarray: A zero-padded array with concatenated inputs. """ # Get the maximum length among all inputs. max_t = max(inp.shape[0] for inp in inputs) # Determine the shape of the output based on the input dimensions. shape = None if len(inputs[0].shape) == 1: shape = (len(inputs), max_t) elif len(inputs[0].shape) == 2: shape = (len(inputs), max_t, inputs[0].shape[1]) # Initialize an array with zeros to hold the concatenated inputs. input_mat = np.zeros(shape, dtype=np.float32) # Copy the input data into the zero-padded array. for e, inp in enumerate(inputs): if len(inp.shape) == 1: input_mat[e, :inp.shape[0]] = inp elif len(inp.shape) == 2: input_mat[e, :inp.shape[0], :] = inp return input_mat def collate_fn_2x_wavs(data): """ A custom collate function for combining batches of waveform input and label pairs. Parameters: data (list): List of tuples (inputs, labels). Returns: tuple: Batched inputs and labels as torch.FloatTensors. """ inputs, labels = zip(*data) x = torch.FloatTensor(inputs) y = torch.FloatTensor(labels) return x, y def collate_fn_2x_wavs_fbank(data): """ A custom collate function for combining batches of waveform inputs, labels, and Fbank features. Parameters: data (list): List of tuples (inputs, labels, fbanks). Returns: tuple: Batched inputs, labels, and Fbank features as torch.FloatTensors. """ inputs, labels, fbanks = zip(*data) x = torch.FloatTensor(inputs) y = torch.FloatTensor(labels) z = torch.FloatTensor(fbanks) return x, y, z class DistributedSampler(data.Sampler): """ Sampler for distributed training. Divides the dataset among multiple replicas (processes), ensuring that each process gets a unique subset of the data. It also supports shuffling and managing epochs. Parameters: dataset (Dataset): The dataset to sample from. num_replicas (int): Number of processes participating in the training. rank (int): Rank of the current process. shuffle (bool): Whether to shuffle the data or not. seed (int): Random seed for reproducibility. """ def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas self.shuffle = shuffle self.seed = seed def __iter__(self): # Shuffle the indices based on the epoch and seed. if self.shuffle: g = torch.Generator() g.manual_seed(self.seed + self.epoch) ind = torch.randperm(int(len(self.dataset) / self.num_replicas), generator=g) * self.num_replicas indices = [] for i in range(self.num_replicas): indices = indices + (ind + i).tolist() else: indices = list(range(len(self.dataset))) # Add extra samples to make the dataset evenly divisible. indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size # Subsample for the current process. indices = indices[self.rank * self.num_samples:(self.rank + 1) * self.num_samples] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch def get_dataloader(args, data_type): """ Creates and returns a data loader and sampler for the specified dataset type (train, validation, or test). Parameters: args (Namespace): Configuration arguments containing details such as batch size, sampling rate, network type, and whether distributed training is used. data_type (str): The type of dataset to load ('train', 'val', 'test'). Returns: sampler (DistributedSampler or None): The sampler for distributed training, or None if not used. generator (DataLoader): The PyTorch DataLoader for the specified dataset. """ # Initialize the dataset based on the given arguments and dataset type (train, val, or test). datasets = AudioDataset(args=args, data_type=data_type) # Create a distributed sampler if distributed training is enabled; otherwise, use no sampler. sampler = DistributedSampler( datasets, num_replicas=args.world_size, # Number of replicas in distributed training. rank=args.local_rank # Rank of the current process. ) if args.distributed else None # Select the appropriate collate function based on the network type. if args.network == 'FRCRN_SE_16K' or args.network == 'MossFormerGAN_SE_16K': # Use the collate function for two-channel waveform data (inputs and labels). collate_fn = collate_fn_2x_wavs elif args.network == 'MossFormer2_SE_48K': # Use the collate function for waveforms along with Fbank features. collate_fn = collate_fn_2x_wavs_fbank else: # Print an error message if the network type is unknown. print(f'in dataloader, please specify a correct network type using args.network!') return # Create a DataLoader with the specified dataset, batch size, and worker configuration. generator = data.DataLoader( datasets, batch_size=args.batch_size, # Batch size for training. shuffle=(sampler is None), # Shuffle the data only if no sampler is used. collate_fn=collate_fn, # Use the selected collate function for batching data. num_workers=args.num_workers, # Number of workers for data loading. sampler=sampler # Use the distributed sampler if applicable. ) # Return both the sampler and DataLoader (generator). return sampler, generator