Spaces:
Sleeping
Sleeping
File size: 26,347 Bytes
70a1183 824e11d 626d92b de25831 0728674 de25831 4409449 b625c80 4409449 a3daf43 4409449 8554568 4409449 b625c80 dbb6927 b625c80 e804e78 b625c80 4409449 b625c80 e804e78 b625c80 e804e78 4409449 b625c80 4409449 2da4702 4409449 e804e78 4409449 8554568 4409449 8554568 e804e78 8554568 fdf81a7 8554568 fdf81a7 8554568 54b9ded a8de91e 54b9ded 8554568 4409449 9f3bb67 36a892c 9f3bb67 4409449 e804e78 4409449 8554568 4409449 8554568 7953440 4409449 8554568 4409449 b625c80 4409449 0420e25 8554568 e804e78 8554568 4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import os
os.environ['DISPLAY'] = ':0.0'
os.environ['PYOPENGL_PLATFORM'] = 'egl'
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
os.system('pip install /home/user/app/pyrender')
# os.system('pip install triangle==20220202')
import gradio as gr
import random
import torch
import time
import cv2
import numpy as np
import OpenGL.GL as gl
import imageio
import pytorch_lightning as pl
import moviepy.editor as mp
from pathlib import Path
from mGPT.data.build_data import build_data
from mGPT.models.build_model import build_model
from mGPT.config import parse_args
from scipy.spatial.transform import Rotation as RRR
import mGPT.render.matplot.plot_3d_global as plot_3d
from mGPT.render.pyrender.hybrik_loc2rot import HybrIKJointsToRotmat
from mGPT.render.pyrender.smpl_render import SMPLRender
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import librosa
from huggingface_hub import snapshot_download
import eventlet
# Load model
cfg = parse_args(phase="webui") # parse config file
cfg.FOLDER = 'cache'
output_dir = Path(cfg.FOLDER)
output_dir.mkdir(parents=True, exist_ok=True)
pl.seed_everything(cfg.SEED_VALUE)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model_path = snapshot_download(repo_id="bill-jiang/MotionGPT-base")
datamodule = build_data(cfg, phase="test")
model = build_model(cfg, datamodule)
state_dict = torch.load(f'{model_path}/motiongpt_s3_h3d.tar',
map_location="cpu")["state_dict"]
model.load_state_dict(state_dict)
model.to(device)
audio_processor = WhisperProcessor.from_pretrained(cfg.model.whisper_path)
audio_model = WhisperForConditionalGeneration.from_pretrained(
cfg.model.whisper_path).to(device)
forced_decoder_ids_zh = audio_processor.get_decoder_prompt_ids(
language="zh", task="translate")
forced_decoder_ids_en = audio_processor.get_decoder_prompt_ids(
language="en", task="translate")
# HTML Style
Video_Components = """
<div class="side-video" style="position: relative;">
<video width="340" autoplay loop>
<source src="file/{video_path}" type="video/mp4">
</video>
<a class="videodl-button" href="file/{video_path}" download="{video_fname}" title="Download Video">
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="#000000" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-video"><path d="m22 8-6 4 6 4V8Z"/><rect width="14" height="12" x="2" y="6" rx="2" ry="2"/></svg>
</a>
<a class="npydl-button" href="file/{motion_path}" download="{motion_fname}" title="Download Motion">
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="#000000" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-file-box"><path d="M14.5 22H18a2 2 0 0 0 2-2V7.5L14.5 2H6a2 2 0 0 0-2 2v4"/><polyline points="14 2 14 8 20 8"/><path d="M2.97 13.12c-.6.36-.97 1.02-.97 1.74v3.28c0 .72.37 1.38.97 1.74l3 1.83c.63.39 1.43.39 2.06 0l3-1.83c.6-.36.97-1.02.97-1.74v-3.28c0-.72-.37-1.38-.97-1.74l-3-1.83a1.97 1.97 0 0 0-2.06 0l-3 1.83Z"/><path d="m7 17-4.74-2.85"/><path d="m7 17 4.74-2.85"/><path d="M7 17v5"/></svg>
</a>
</div>
"""
Video_Components_example = """
<div class="side-video" style="position: relative;">
<video width="340" autoplay loop controls>
<source src="file/{video_path}" type="video/mp4">
</video>
<a class="npydl-button" href="file/{video_path}" download="{video_fname}" title="Download Video">
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-video"><path d="m22 8-6 4 6 4V8Z"/><rect width="14" height="12" x="2" y="6" rx="2" ry="2"/></svg>
</a>
</div>
"""
Text_Components = """
<h3 class="side-content" >{msg}</h3>
"""
def motion_token_to_string(motion_token, lengths, codebook_size=512):
motion_string = []
for i in range(motion_token.shape[0]):
motion_i = motion_token[i].cpu(
) if motion_token.device.type == 'cuda' else motion_token[i]
motion_list = motion_i.tolist()[:lengths[i]]
motion_string.append(
(f'<motion_id_{codebook_size}>' +
''.join([f'<motion_id_{int(i)}>' for i in motion_list]) +
f'<motion_id_{codebook_size + 1}>'))
return motion_string
def render_motion(data, feats, method='fast'):
fname = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(
time.time())) + str(np.random.randint(10000, 99999))
video_fname = fname + '.mp4'
feats_fname = fname + '.npy'
output_npy_path = os.path.join(output_dir, feats_fname)
output_mp4_path = os.path.join(output_dir, video_fname)
np.save(output_npy_path, feats)
if method == 'slow':
if len(data.shape) == 4:
data = data[0]
data = data - data[0, 0]
pose_generator = HybrIKJointsToRotmat()
pose = pose_generator(data)
pose = np.concatenate([
pose,
np.stack([np.stack([np.eye(3)] * pose.shape[0], 0)] * 2, 1)
], 1)
shape = [768, 768]
render = SMPLRender(cfg.RENDER.SMPL_MODEL_PATH)
r = RRR.from_rotvec(np.array([np.pi, 0.0, 0.0]))
pose[:, 0] = np.matmul(r.as_matrix().reshape(1, 3, 3), pose[:, 0])
vid = []
aroot = data[:, 0]
aroot[:, 1:] = -aroot[:, 1:]
params = dict(pred_shape=np.zeros([1, 10]),
pred_root=aroot,
pred_pose=pose)
render.init_renderer([shape[0], shape[1], 3], params)
for i in range(data.shape[0]):
renderImg = render.render(i)
vid.append(renderImg)
out = np.stack(vid, axis=0)
output_gif_path = output_mp4_path[:-4] + '.gif'
imageio.mimwrite(output_gif_path, out, duration=50)
out_video = mp.VideoFileClip(output_gif_path)
out_video.write_videofile(output_mp4_path)
del out, render
elif method == 'fast':
output_gif_path = output_mp4_path[:-4] + '.gif'
if len(data.shape) == 3:
data = data[None]
if isinstance(data, torch.Tensor):
data = data.cpu().numpy()
pose_vis = plot_3d.draw_to_batch(data, [''], [output_gif_path])
out_video = mp.VideoFileClip(output_gif_path)
out_video.write_videofile(output_mp4_path)
del pose_vis
return output_mp4_path, video_fname, output_npy_path, feats_fname
def load_motion(motion_uploaded, method):
file = motion_uploaded['file']
feats = torch.tensor(np.load(file), device=model.device)
if len(feats.shape) == 2:
feats = feats[None]
# feats = model.datamodule.normalize(feats)
# Motion tokens
motion_lengths = feats.shape[0]
motion_token, _ = model.vae.encode(feats)
motion_token_string = model.lm.motion_token_to_string(
motion_token, [motion_token.shape[1]])[0]
motion_token_length = motion_token.shape[1]
# Motion rendered
joints = model.datamodule.feats2joints(feats.cpu()).cpu().numpy()
output_mp4_path, video_fname, output_npy_path, joints_fname = render_motion(
joints,
feats.to('cpu').numpy(), method)
motion_uploaded.update({
"feats": feats,
"joints": joints,
"motion_video": output_mp4_path,
"motion_video_fname": video_fname,
"motion_joints": output_npy_path,
"motion_joints_fname": joints_fname,
"motion_lengths": motion_lengths,
"motion_token": motion_token,
"motion_token_string": motion_token_string,
"motion_token_length": motion_token_length,
})
return motion_uploaded
def add_text(history, text, motion_uploaded, data_stored, method):
data_stored = data_stored + [{'user_input': text}]
text = f"""<h3>{text}</h3>"""
history = history + [(text, None)]
if 'file' in motion_uploaded.keys():
motion_uploaded = load_motion(motion_uploaded, method)
output_mp4_path = motion_uploaded['motion_video']
video_fname = motion_uploaded['motion_video_fname']
output_npy_path = motion_uploaded['motion_joints']
joints_fname = motion_uploaded['motion_joints_fname']
history = history + [(Video_Components.format(
video_path=output_mp4_path,
video_fname=video_fname,
motion_path=output_npy_path,
motion_fname=joints_fname), None)]
return history, gr.update(value="",
interactive=False), motion_uploaded, data_stored
def add_audio(history, audio_path, data_stored, language='en'):
audio, sampling_rate = librosa.load(audio_path, sr=16000)
input_features = audio_processor(
audio, sampling_rate, return_tensors="pt"
).input_features # whisper training sampling rate, do not modify
input_features = torch.Tensor(input_features).to(device)
if language == 'English':
forced_decoder_ids = forced_decoder_ids_en
else:
forced_decoder_ids = forced_decoder_ids_zh
predicted_ids = audio_model.generate(input_features,
forced_decoder_ids=forced_decoder_ids)
text_input = audio_processor.batch_decode(predicted_ids,
skip_special_tokens=True)
text_input = str(text_input).strip('[]"')
data_stored = data_stored + [{'user_input': text_input}]
gr.update(value=data_stored, interactive=False)
history = history + [(text_input, None)]
return history, data_stored
def add_file(history, file, txt, motion_uploaded):
motion_uploaded['file'] = file.name
txt = txt.replace(" <Motion_Placeholder>", "") + " <Motion_Placeholder>"
return history, gr.update(value=txt, interactive=True), motion_uploaded
def bot(history, motion_uploaded, data_stored, method):
motion_length, motion_token_string = motion_uploaded[
"motion_lengths"], motion_uploaded["motion_token_string"]
input = data_stored[-1]['user_input']
prompt = model.lm.placeholder_fulfill(input, motion_length,
motion_token_string, "")
data_stored[-1]['model_input'] = prompt
batch = {
"length": [motion_length],
"text": [prompt],
}
outputs = model(batch, task="t2m")
out_feats = outputs["feats"][0]
out_lengths = outputs["length"][0]
out_joints = outputs["joints"][:out_lengths].detach().cpu().numpy()
out_texts = outputs["texts"][0]
output_mp4_path, video_fname, output_npy_path, joints_fname = render_motion(
out_joints,
out_feats.to('cpu').numpy(), method)
motion_uploaded = {
"feats": None,
"joints": None,
"motion_video": None,
"motion_lengths": 0,
"motion_token": None,
"motion_token_string": '',
"motion_token_length": 0,
}
data_stored[-1]['model_output'] = {
"feats": out_feats,
"joints": out_joints,
"length": out_lengths,
"texts": out_texts,
"motion_video": output_mp4_path,
"motion_video_fname": video_fname,
"motion_joints": output_npy_path,
"motion_joints_fname": joints_fname,
}
if '<Motion_Placeholder>' == out_texts:
response = [
Video_Components.format(video_path=output_mp4_path,
video_fname=video_fname,
motion_path=output_npy_path,
motion_fname=joints_fname)
]
elif '<Motion_Placeholder>' in out_texts:
response = [
Text_Components.format(
msg=out_texts.split("<Motion_Placeholder>")[0]),
Video_Components.format(video_path=output_mp4_path,
video_fname=video_fname,
motion_path=output_npy_path,
motion_fname=joints_fname),
Text_Components.format(
msg=out_texts.split("<Motion_Placeholder>")[1]),
]
else:
response = f"""<h3>{out_texts}</h3>"""
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.02)
yield history, motion_uploaded, data_stored
def bot_example(history, responses):
history = history + responses
return history
with open("assets/css/custom.css", "r", encoding="utf-8") as f:
customCSS = f.read()
with gr.Blocks(css=customCSS) as demo:
# Examples
chat_instruct = gr.State([
(None,
"π Hi, I'm MotionGPT! I can generate realistic human motion from text, or generate text from motion."
),
(None,
"π‘ You can chat with me in pure text like generating human motion following your descriptions."
),
(None,
"π‘ After generation, you can click the button in the top right of generation human motion result to download the human motion video or feature stored in .npy format."
),
(None,
"π‘ With the human motion feature file downloaded or got from dataset, you are able to ask me to translate it!"
),
(None,
"π‘ Of courser, you can also purely chat with me and let me give you human motion in text, here are some examples!"
),
(None,
"π‘ We provide two motion visulization methods. The default fast method is skeleton line ploting which is like the examples below:"
),
(None,
Video_Components_example.format(
video_path="assets/videos/example0_fast.mp4",
video_fname="example0_fast.mp4")),
(None,
"π‘ And the slow method is SMPL model rendering which is more realistic but slower."
),
(None,
Video_Components_example.format(
video_path="assets/videos/example0.mp4",
video_fname="example0.mp4")),
(None,
"π‘ If you want to get the video in our paper and website like below, you can refer to the scirpt in our [github repo](https://github.com/OpenMotionLab/MotionGPT#-visualization)."
),
(None,
Video_Components_example.format(
video_path="assets/videos/example0_blender.mp4",
video_fname="example0_blender.mp4")),
(None, "π Follow the examples and try yourself!"),
])
chat_instruct_sum = gr.State([(None, '''
π Hi, I'm MotionGPT! I can generate realistic human motion from text, or generate text from motion.
1. You can chat with me in pure text like generating human motion following your descriptions.
2. After generation, you can click the button in the top right of generation human motion result to download the human motion video or feature stored in .npy format.
3. With the human motion feature file downloaded or got from dataset, you are able to ask me to translate it!
4. Of course, you can also purely chat with me and let me give you human motion in text, here are some examples!
''')] + chat_instruct.value[-7:])
t2m_examples = gr.State([
(None,
"π‘ You can chat with me in pure text, following are some examples of text-to-motion generation!"
),
("A person is walking forwards, but stumbles and steps back, then carries on forward.",
Video_Components_example.format(
video_path="assets/videos/example0.mp4",
video_fname="example0.mp4")),
("Generate a man aggressively kicks an object to the left using his right foot.",
Video_Components_example.format(
video_path="assets/videos/example1.mp4",
video_fname="example1.mp4")),
("Generate a person lowers their arms, gets onto all fours, and crawls.",
Video_Components_example.format(
video_path="assets/videos/example2.mp4",
video_fname="example2.mp4")),
("Show me the video of a person bends over and picks things up with both hands individually, then walks forward.",
Video_Components_example.format(
video_path="assets/videos/example3.mp4",
video_fname="example3.mp4")),
("Imagine a person is practing balancing on one leg.",
Video_Components_example.format(
video_path="assets/videos/example5.mp4",
video_fname="example5.mp4")),
("Show me a person walks forward, stops, turns directly to their right, then walks forward again.",
Video_Components_example.format(
video_path="assets/videos/example6.mp4",
video_fname="example6.mp4")),
("I saw a person sits on the ledge of something then gets off and walks away.",
Video_Components_example.format(
video_path="assets/videos/example7.mp4",
video_fname="example7.mp4")),
("Show me a person is crouched down and walking around sneakily.",
Video_Components_example.format(
video_path="assets/videos/example8.mp4",
video_fname="example8.mp4")),
])
m2t_examples = gr.State([
(None,
"π‘ With the human motion feature file downloaded or got from dataset, you are able to ask me to translate it, here are some examples!"
),
("Please explain the movement shown in <Motion_Placeholder> using natural language.",
None),
(Video_Components_example.format(
video_path="assets/videos/example0.mp4",
video_fname="example0.mp4"),
"The person was pushed but didn't fall down"),
("What kind of action is being represented in <Motion_Placeholder>? Explain it in text.",
None),
(Video_Components_example.format(
video_path="assets/videos/example4.mp4",
video_fname="example4.mp4"),
"The figure has its hands curled at jaw level, steps onto its left foot and raises right leg with bent knee to kick forward and return to starting stance."
),
("Provide a summary of the motion demonstrated in <Motion_Placeholder> using words.",
None),
(Video_Components_example.format(
video_path="assets/videos/example2.mp4",
video_fname="example2.mp4"),
"A person who is standing with his arms up and away from his sides bends over, gets down on his hands and then his knees and crawls forward."
),
("Generate text for <Motion_Placeholder>:", None),
(Video_Components_example.format(
video_path="assets/videos/example5.mp4",
video_fname="example5.mp4"),
"The man tries to stand in a yoga tree pose and looses his balance."),
("Provide a summary of the motion depicted in <Motion_Placeholder> using language.",
None),
(Video_Components_example.format(
video_path="assets/videos/example6.mp4",
video_fname="example6.mp4"),
"Person walks up some steps then leeps to the other side and goes up a few more steps and jumps dow"
),
("Describe the motion represented by <Motion_Placeholder> in plain English.",
None),
(Video_Components_example.format(
video_path="assets/videos/example7.mp4",
video_fname="example7.mp4"),
"Person sits down, then stands up and walks forward. then the turns around 180 degrees and walks the opposite direction"
),
("Provide a description of the action in <Motion_Placeholder> using words.",
None),
(Video_Components_example.format(
video_path="assets/videos/example8.mp4",
video_fname="example8.mp4"),
"This man is bent forward and walks slowly around."),
])
t2t_examples = gr.State([
(None,
"π‘ Of course, you can also purely chat with me and let me give you human motion in text, here are some examples!"
),
('Depict a motion as like you have seen it.',
"A person slowly walked forward in rigth direction while making the circle"
),
('Random say something about describing a human motion.',
"A man throws punches using his right hand."),
('Describe the motion of someone as you will.',
"Person is moving left to right in a dancing stance swaying hips, moving feet left to right with arms held out"
),
('Come up with a human motion caption.',
"A person is walking in a counter counterclockwise motion."),
('Write a sentence about how someone might dance.',
"A person with his hands down by his sides reaches down for something with his right hand, uses the object to make a stirring motion, then places the item back down."
),
('Depict a motion as like you have seen it.',
"A person is walking forward a few feet, then turns around, walks back, and continues walking."
)
])
Init_chatbot = chat_instruct.value[:
1] + t2m_examples.value[:
3] + m2t_examples.value[:3] + t2t_examples.value[:2] + chat_instruct.value[
-7:]
# Variables
motion_uploaded = gr.State({
"feats": None,
"joints": None,
"motion_video": None,
"motion_lengths": 0,
"motion_token": None,
"motion_token_string": '',
"motion_token_length": 0,
})
data_stored = gr.State([])
gr.Markdown('''
# MotionGPT: Human Motion as a Foreign Language
<p align="left">
<a href="https://github.com/OpenMotionLab/MotionGPT">Github Repo</a> β’
<a href="https://motion-gpt.github.io/">Project Page</a> β’
<a href="https://arxiv.org/abs/2306.14795">Arxiv Paper</a> β’
<a href="https://github.com/OpenMotionLab/MotionGPT#-citation">Citation
</p>
''')
chatbot = gr.Chatbot(Init_chatbot,
elem_id="mGPT",
height=600,
label="MotionGPT",
avatar_images=(None,
("assets/images/avatar_bot.jpg")),
bubble_full_width=False)
with gr.Row():
with gr.Column(scale=0.85):
with gr.Row():
txt = gr.Textbox(
label="Text",
show_label=False,
elem_id="textbox",
placeholder=
"Enter text and press ENTER or speak to input. You can also upload motion.",
container=False)
with gr.Row():
aud = gr.Audio(source="microphone",
label="Speak input",
type='filepath')
btn = gr.UploadButton("π Upload motion",
elem_id="upload",
file_types=["file"])
# regen = gr.Button("π Regenerate", elem_id="regen")
clear = gr.ClearButton([txt, chatbot, aud], value='ποΈ Clear')
with gr.Row():
gr.Markdown('''
### You can get more examples (pre-generated for faster response) by clicking the buttons below:
''')
with gr.Row():
instruct_eg = gr.Button("Instructions", elem_id="instruct")
t2m_eg = gr.Button("Text-to-Motion", elem_id="t2m")
m2t_eg = gr.Button("Motion-to-Text", elem_id="m2t")
t2t_eg = gr.Button("Random description", elem_id="t2t")
with gr.Column(scale=0.15, min_width=150):
method = gr.Dropdown(["slow", "fast"],
label="Visulization method",
interactive=True,
elem_id="method",
value="slow")
language = gr.Dropdown(["English", "δΈζ"],
label="Speech language",
interactive=True,
elem_id="language",
value="English")
txt_msg = txt.submit(
add_text, [chatbot, txt, motion_uploaded, data_stored, method],
[chatbot, txt, motion_uploaded, data_stored],
queue=False).then(bot, [chatbot, motion_uploaded, data_stored, method],
[chatbot, motion_uploaded, data_stored])
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
file_msg = btn.upload(add_file, [chatbot, btn, txt, motion_uploaded],
[chatbot, txt, motion_uploaded],
queue=False)
aud_msg = aud.stop_recording(
add_audio, [chatbot, aud, data_stored, language],
[chatbot, data_stored],
queue=False).then(bot, [chatbot, motion_uploaded, data_stored, method],
[chatbot, motion_uploaded, data_stored])
# regen_msg = regen.click(bot,
# [chatbot, motion_uploaded, data_stored, method],
# [chatbot, motion_uploaded, data_stored],
# queue=False)
instruct_msg = instruct_eg.click(bot_example, [chatbot, chat_instruct_sum],
[chatbot],
queue=False)
t2m_eg_msg = t2m_eg.click(bot_example, [chatbot, t2m_examples], [chatbot],
queue=False)
m2t_eg_msg = m2t_eg.click(bot_example, [chatbot, m2t_examples], [chatbot],
queue=False)
t2t_eg_msg = t2t_eg.click(bot_example, [chatbot, t2t_examples], [chatbot],
queue=False)
chatbot.change(scroll_to_output=True)
if __name__ == "__main__":
demo.launch(debug=True)
|