File size: 8,695 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import sys
import os

import time
import pickle

import numpy as np

import torch
import torch.nn as nn

DEFAULT_DTYPE = torch.float32


def create_prior(prior_type, **kwargs):
    if prior_type == 'gmm':
        prior = MaxMixturePrior(**kwargs)
    elif prior_type == 'l2':
        return L2Prior(**kwargs)
    elif prior_type == 'angle':
        return SMPLifyAnglePrior(**kwargs)
    elif prior_type == 'none' or prior_type is None:
        # Don't use any pose prior
        def no_prior(*args, **kwargs):
            return 0.0
        prior = no_prior
    else:
        raise ValueError('Prior {}'.format(prior_type) + ' is not implemented')
    return prior


class SMPLifyAnglePrior(nn.Module):
    def __init__(self, dtype=torch.float32, **kwargs):
        super(SMPLifyAnglePrior, self).__init__()

        # Indices for the roration angle of
        # 55: left elbow,  90deg bend at -np.pi/2
        # 58: right elbow, 90deg bend at np.pi/2
        # 12: left knee,   90deg bend at np.pi/2
        # 15: right knee,  90deg bend at np.pi/2
        angle_prior_idxs = np.array([55, 58, 12, 15], dtype=np.int64)
        angle_prior_idxs = torch.tensor(angle_prior_idxs, dtype=torch.long)
        self.register_buffer('angle_prior_idxs', angle_prior_idxs)

        angle_prior_signs = np.array([1, -1, -1, -1],
                                     dtype=np.float6432 if dtype == torch.float32
                                     else np.float6464)
        angle_prior_signs = torch.tensor(angle_prior_signs,
                                         dtype=dtype)
        self.register_buffer('angle_prior_signs', angle_prior_signs)

    def forward(self, pose, with_global_pose=False):
        ''' Returns the angle prior loss for the given pose
        Args:
            pose: (Bx[23 + 1] * 3) torch tensor with the axis-angle
            representation of the rotations of the joints of the SMPL model.
        Kwargs:
            with_global_pose: Whether the pose vector also contains the global
            orientation of the SMPL model. If not then the indices must be
            corrected.
        Returns:
            A sze (B) tensor containing the angle prior loss for each element
            in the batch.
        '''
        angle_prior_idxs = self.angle_prior_idxs - (not with_global_pose) * 3
        return torch.exp(pose[:, angle_prior_idxs] *
                         self.angle_prior_signs).pow(2)


class L2Prior(nn.Module):
    def __init__(self, dtype=DEFAULT_DTYPE, reduction='sum', **kwargs):
        super(L2Prior, self).__init__()

    def forward(self, module_input, *args):
        return torch.sum(module_input.pow(2))


class MaxMixturePrior(nn.Module):

    def __init__(self, prior_folder='prior',
                 num_gaussians=6, dtype=DEFAULT_DTYPE, epsilon=1e-16,
                 use_merged=True,
                 **kwargs):
        super(MaxMixturePrior, self).__init__()

        if dtype == DEFAULT_DTYPE:
            np_dtype = np.float6432
        elif dtype == torch.float64:
            np_dtype = np.float6464
        else:
            print('Unknown float type {}, exiting!'.format(dtype))
            sys.exit(-1)

        self.num_gaussians = num_gaussians
        self.epsilon = epsilon
        self.use_merged = use_merged
        gmm_fn = 'gmm_{:02d}.pkl'.format(num_gaussians)

        full_gmm_fn = os.path.join(prior_folder, gmm_fn)
        if not os.path.exists(full_gmm_fn):
            print('The path to the mixture prior "{}"'.format(full_gmm_fn) +
                  ' does not exist, exiting!')
            sys.exit(-1)

        with open(full_gmm_fn, 'rb') as f:
            gmm = pickle.load(f, encoding='latin1')

        if type(gmm) == dict:
            means = gmm['means'].astype(np_dtype)
            covs = gmm['covars'].astype(np_dtype)
            weights = gmm['weights'].astype(np_dtype)
        elif 'sklearn.mixture.gmm.GMM' in str(type(gmm)):
            means = gmm.means_.astype(np_dtype)
            covs = gmm.covars_.astype(np_dtype)
            weights = gmm.weights_.astype(np_dtype)
        else:
            print('Unknown type for the prior: {}, exiting!'.format(type(gmm)))
            sys.exit(-1)

        self.register_buffer('means', torch.tensor(means, dtype=dtype))

        self.register_buffer('covs', torch.tensor(covs, dtype=dtype))

        precisions = [np.linalg.inv(cov) for cov in covs]
        precisions = np.stack(precisions).astype(np_dtype)

        self.register_buffer('precisions',
                             torch.tensor(precisions, dtype=dtype))

        # The constant term:
        sqrdets = np.array([(np.sqrt(np.linalg.det(c)))
                            for c in gmm['covars']])
        const = (2 * np.pi)**(69 / 2.)

        nll_weights = np.asarray(gmm['weights'] / (const *
                                                   (sqrdets / sqrdets.min())))
        nll_weights = torch.tensor(nll_weights, dtype=dtype).unsqueeze(dim=0)
        self.register_buffer('nll_weights', nll_weights)

        weights = torch.tensor(gmm['weights'], dtype=dtype).unsqueeze(dim=0)
        self.register_buffer('weights', weights)

        self.register_buffer('pi_term',
                             torch.log(torch.tensor(2 * np.pi, dtype=dtype)))

        cov_dets = [np.log(np.linalg.det(cov.astype(np_dtype)) + epsilon)
                    for cov in covs]
        self.register_buffer('cov_dets',
                             torch.tensor(cov_dets, dtype=dtype))

        # The dimensionality of the random variable
        self.random_var_dim = self.means.shape[1]

    def get_mean(self):
        ''' Returns the mean of the mixture '''
        mean_pose = torch.matmul(self.weights, self.means)
        return mean_pose

    def merged_log_likelihood(self, pose, betas):
        diff_from_mean = pose.unsqueeze(dim=1) - self.means

        prec_diff_prod = torch.einsum('mij,bmj->bmi',
                                      [self.precisions, diff_from_mean])
        diff_prec_quadratic = (prec_diff_prod * diff_from_mean).sum(dim=-1)

        curr_loglikelihood = 0.5 * diff_prec_quadratic - \
            torch.log(self.nll_weights)
        #  curr_loglikelihood = 0.5 * (self.cov_dets.unsqueeze(dim=0) +
        #  self.random_var_dim * self.pi_term +
        #  diff_prec_quadratic
        #  ) - torch.log(self.weights)

        min_likelihood, _ = torch.min(curr_loglikelihood, dim=1)
        return min_likelihood

    def log_likelihood(self, pose, betas, *args, **kwargs):
        ''' Create graph operation for negative log-likelihood calculation
        '''
        likelihoods = []

        for idx in range(self.num_gaussians):
            mean = self.means[idx]
            prec = self.precisions[idx]
            cov = self.covs[idx]
            diff_from_mean = pose - mean

            curr_loglikelihood = torch.einsum('bj,ji->bi',
                                              [diff_from_mean, prec])
            curr_loglikelihood = torch.einsum('bi,bi->b',
                                              [curr_loglikelihood,
                                               diff_from_mean])
            cov_term = torch.log(torch.det(cov) + self.epsilon)
            curr_loglikelihood += 0.5 * (cov_term +
                                         self.random_var_dim *
                                         self.pi_term)
            likelihoods.append(curr_loglikelihood)

        log_likelihoods = torch.stack(likelihoods, dim=1)
        min_idx = torch.argmin(log_likelihoods, dim=1)
        weight_component = self.nll_weights[:, min_idx]
        weight_component = -torch.log(weight_component)

        return weight_component + log_likelihoods[:, min_idx]

    def forward(self, pose, betas):
        if self.use_merged:
            return self.merged_log_likelihood(pose, betas)
        else:
            return self.log_likelihood(pose, betas)