File size: 5,831 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2020 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

from typing import Optional
from torch import Tensor
import smplx

from .base import Datastruct, dataclass, Transform

from .rots2rfeats import Rots2Rfeats
from .rots2joints import Rots2Joints
from .joints2jfeats import Joints2Jfeats


class SMPLTransform(Transform):
    def __init__(self, rots2rfeats: Rots2Rfeats,
                 rots2joints: Rots2Joints,
                 joints2jfeats: Joints2Jfeats,
                 **kwargs):
        self.rots2rfeats = rots2rfeats
        self.rots2joints = rots2joints
        self.joints2jfeats = joints2jfeats

    def Datastruct(self, **kwargs):
        return SMPLDatastruct(_rots2rfeats=self.rots2rfeats,
                              _rots2joints=self.rots2joints,
                              _joints2jfeats=self.joints2jfeats,
                              transforms=self,
                              **kwargs)

    def __repr__(self):
        return "SMPLTransform()"


class RotIdentityTransform(Transform):
    def __init__(self, **kwargs):
        return

    def Datastruct(self, **kwargs):
        return RotTransDatastruct(**kwargs)

    def __repr__(self):
        return "RotIdentityTransform()"


@dataclass
class RotTransDatastruct(Datastruct):
    rots: Tensor
    trans: Tensor

    transforms: RotIdentityTransform = RotIdentityTransform()

    def __post_init__(self):
        self.datakeys = ["rots", "trans"]

    def __len__(self):
        return len(self.rots)


@dataclass
class SMPLDatastruct(Datastruct):
    transforms: SMPLTransform
    _rots2rfeats: Rots2Rfeats
    _rots2joints: Rots2Joints
    _joints2jfeats: Joints2Jfeats

    features: Optional[Tensor] = None
    rots_: Optional[RotTransDatastruct] = None
    rfeats_: Optional[Tensor] = None
    joints_: Optional[Tensor] = None
    jfeats_: Optional[Tensor] = None
    vertices_: Optional[Tensor] = None

    def __post_init__(self):
        self.datakeys = ['features', 'rots_', 'rfeats_',
                         'joints_', 'jfeats_', 'vertices_']
        # starting point
        if self.features is not None and self.rfeats_ is None:
            self.rfeats_ = self.features

    @property
    def rots(self):
        # Cached value
        if self.rots_ is not None:
            return self.rots_

        # self.rfeats_ should be defined
        assert self.rfeats_ is not None

        self._rots2rfeats.to(self.rfeats.device)
        self.rots_ = self._rots2rfeats.inverse(self.rfeats)
        return self.rots_

    @property
    def rfeats(self):
        # Cached value
        if self.rfeats_ is not None:
            return self.rfeats_

        # self.rots_ should be defined
        assert self.rots_ is not None

        self._rots2rfeats.to(self.rots.device)
        self.rfeats_ = self._rots2rfeats(self.rots)
        return self.rfeats_

    @property
    def joints(self):
        # Cached value
        if self.joints_ is not None:
            return self.joints_

        self._rots2joints.to(self.rots.device)
        self.joints_ = self._rots2joints(self.rots)
        return self.joints_

    @property
    def jfeats(self):
        # Cached value
        if self.jfeats_ is not None:
            return self.jfeats_

        self._joints2jfeats.to(self.joints.device)
        self.jfeats_ = self._joints2jfeats(self.joints)
        return self.jfeats_
    
    @property
    def vertices(self):
        # Cached value
        if self.vertices_ is not None:
            return self.vertices_

        self._rots2joints.to(self.rots.device)
        self.vertices_ = self._rots2joints(self.rots, jointstype="vertices")
        return self.vertices_
    
    def __len__(self):
        return len(self.rfeats)


def get_body_model(model_type, gender, batch_size, device='cpu', ext='pkl'):
    '''
    type: smpl, smplx smplh and others. Refer to smplx tutorial
    gender: male, female, neutral
    batch_size: an positive integar
    '''
    mtype = model_type.upper()
    if gender != 'neutral':
        if not isinstance(gender, str):
            gender = str(gender.astype(str)).upper()
        else:
            gender = gender.upper()
    else:
        gender = gender.upper()
        ext = 'npz'
    body_model_path = f'data/smpl_models/{model_type}/{mtype}_{gender}.{ext}'

    body_model = smplx.create(body_model_path, model_type=type,
                              gender=gender, ext=ext,
                              use_pca=False,
                              num_pca_comps=12,
                              create_global_orient=True,
                              create_body_pose=True,
                              create_betas=True,
                              create_left_hand_pose=True,
                              create_right_hand_pose=True,
                              create_expression=True,
                              create_jaw_pose=True,
                              create_leye_pose=True,
                              create_reye_pose=True,
                              create_transl=True,
                              batch_size=batch_size)
    
    if device == 'cuda':
        return body_model.cuda()
    else:
        return body_model