Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2020 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
from typing import Optional | |
from torch import Tensor | |
import smplx | |
from .base import Datastruct, dataclass, Transform | |
from .rots2rfeats import Rots2Rfeats | |
from .rots2joints import Rots2Joints | |
from .joints2jfeats import Joints2Jfeats | |
class SMPLTransform(Transform): | |
def __init__(self, rots2rfeats: Rots2Rfeats, | |
rots2joints: Rots2Joints, | |
joints2jfeats: Joints2Jfeats, | |
**kwargs): | |
self.rots2rfeats = rots2rfeats | |
self.rots2joints = rots2joints | |
self.joints2jfeats = joints2jfeats | |
def Datastruct(self, **kwargs): | |
return SMPLDatastruct(_rots2rfeats=self.rots2rfeats, | |
_rots2joints=self.rots2joints, | |
_joints2jfeats=self.joints2jfeats, | |
transforms=self, | |
**kwargs) | |
def __repr__(self): | |
return "SMPLTransform()" | |
class RotIdentityTransform(Transform): | |
def __init__(self, **kwargs): | |
return | |
def Datastruct(self, **kwargs): | |
return RotTransDatastruct(**kwargs) | |
def __repr__(self): | |
return "RotIdentityTransform()" | |
class RotTransDatastruct(Datastruct): | |
rots: Tensor | |
trans: Tensor | |
transforms: RotIdentityTransform = RotIdentityTransform() | |
def __post_init__(self): | |
self.datakeys = ["rots", "trans"] | |
def __len__(self): | |
return len(self.rots) | |
class SMPLDatastruct(Datastruct): | |
transforms: SMPLTransform | |
_rots2rfeats: Rots2Rfeats | |
_rots2joints: Rots2Joints | |
_joints2jfeats: Joints2Jfeats | |
features: Optional[Tensor] = None | |
rots_: Optional[RotTransDatastruct] = None | |
rfeats_: Optional[Tensor] = None | |
joints_: Optional[Tensor] = None | |
jfeats_: Optional[Tensor] = None | |
vertices_: Optional[Tensor] = None | |
def __post_init__(self): | |
self.datakeys = ['features', 'rots_', 'rfeats_', | |
'joints_', 'jfeats_', 'vertices_'] | |
# starting point | |
if self.features is not None and self.rfeats_ is None: | |
self.rfeats_ = self.features | |
def rots(self): | |
# Cached value | |
if self.rots_ is not None: | |
return self.rots_ | |
# self.rfeats_ should be defined | |
assert self.rfeats_ is not None | |
self._rots2rfeats.to(self.rfeats.device) | |
self.rots_ = self._rots2rfeats.inverse(self.rfeats) | |
return self.rots_ | |
def rfeats(self): | |
# Cached value | |
if self.rfeats_ is not None: | |
return self.rfeats_ | |
# self.rots_ should be defined | |
assert self.rots_ is not None | |
self._rots2rfeats.to(self.rots.device) | |
self.rfeats_ = self._rots2rfeats(self.rots) | |
return self.rfeats_ | |
def joints(self): | |
# Cached value | |
if self.joints_ is not None: | |
return self.joints_ | |
self._rots2joints.to(self.rots.device) | |
self.joints_ = self._rots2joints(self.rots) | |
return self.joints_ | |
def jfeats(self): | |
# Cached value | |
if self.jfeats_ is not None: | |
return self.jfeats_ | |
self._joints2jfeats.to(self.joints.device) | |
self.jfeats_ = self._joints2jfeats(self.joints) | |
return self.jfeats_ | |
def vertices(self): | |
# Cached value | |
if self.vertices_ is not None: | |
return self.vertices_ | |
self._rots2joints.to(self.rots.device) | |
self.vertices_ = self._rots2joints(self.rots, jointstype="vertices") | |
return self.vertices_ | |
def __len__(self): | |
return len(self.rfeats) | |
def get_body_model(model_type, gender, batch_size, device='cpu', ext='pkl'): | |
''' | |
type: smpl, smplx smplh and others. Refer to smplx tutorial | |
gender: male, female, neutral | |
batch_size: an positive integar | |
''' | |
mtype = model_type.upper() | |
if gender != 'neutral': | |
if not isinstance(gender, str): | |
gender = str(gender.astype(str)).upper() | |
else: | |
gender = gender.upper() | |
else: | |
gender = gender.upper() | |
ext = 'npz' | |
body_model_path = f'data/smpl_models/{model_type}/{mtype}_{gender}.{ext}' | |
body_model = smplx.create(body_model_path, model_type=type, | |
gender=gender, ext=ext, | |
use_pca=False, | |
num_pca_comps=12, | |
create_global_orient=True, | |
create_body_pose=True, | |
create_betas=True, | |
create_left_hand_pose=True, | |
create_right_hand_pose=True, | |
create_expression=True, | |
create_jaw_pose=True, | |
create_leye_pose=True, | |
create_reye_pose=True, | |
create_transl=True, | |
batch_size=batch_size) | |
if device == 'cuda': | |
return body_model.cuda() | |
else: | |
return body_model | |