Spaces:
Runtime error
Runtime error
File size: 6,475 Bytes
4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import os
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.callbacks import Callback, RichProgressBar, ModelCheckpoint
def build_callbacks(cfg, logger=None, phase='test', **kwargs):
callbacks = []
logger = logger
# Rich Progress Bar
callbacks.append(progressBar())
# Checkpoint Callback
if phase == 'train':
callbacks.extend(getCheckpointCallback(cfg, logger=logger, **kwargs))
return callbacks
def getCheckpointCallback(cfg, logger=None, **kwargs):
callbacks = []
# Logging
metric_monitor = {
"loss_total": "total/train",
"Train_jf": "recons/text2jfeats/train",
"Val_jf": "recons/text2jfeats/val",
"Train_rf": "recons/text2rfeats/train",
"Val_rf": "recons/text2rfeats/val",
"APE root": "Metrics/APE_root",
"APE mean pose": "Metrics/APE_mean_pose",
"AVE root": "Metrics/AVE_root",
"AVE mean pose": "Metrics/AVE_mean_pose",
"R_TOP_1": "Metrics/R_precision_top_1",
"R_TOP_2": "Metrics/R_precision_top_2",
"R_TOP_3": "Metrics/R_precision_top_3",
"gt_R_TOP_3": "Metrics/gt_R_precision_top_3",
"FID": "Metrics/FID",
"gt_FID": "Metrics/gt_FID",
"Diversity": "Metrics/Diversity",
"MM dist": "Metrics/Matching_score",
"Accuracy": "Metrics/accuracy",
}
callbacks.append(
progressLogger(logger,metric_monitor=metric_monitor,log_every_n_steps=1))
# Save 10 latest checkpoints
checkpointParams = {
'dirpath': os.path.join(cfg.FOLDER_EXP, "checkpoints"),
'filename': "{epoch}",
'monitor': "step",
'mode': "max",
'every_n_epochs': cfg.LOGGER.VAL_EVERY_STEPS,
'save_top_k': 8,
'save_last': True,
'save_on_train_epoch_end': True
}
callbacks.append(ModelCheckpoint(**checkpointParams))
# Save checkpoint every n*10 epochs
checkpointParams.update({
'every_n_epochs':
cfg.LOGGER.VAL_EVERY_STEPS * 10,
'save_top_k':
-1,
'save_last':
False
})
callbacks.append(ModelCheckpoint(**checkpointParams))
metrics = cfg.METRIC.TYPE
metric_monitor_map = {
'TemosMetric': {
'Metrics/APE_root': {
'abbr': 'APEroot',
'mode': 'min'
},
},
'TM2TMetrics': {
'Metrics/FID': {
'abbr': 'FID',
'mode': 'min'
},
'Metrics/R_precision_top_3': {
'abbr': 'R3',
'mode': 'max'
}
},
'MRMetrics': {
'Metrics/MPJPE': {
'abbr': 'MPJPE',
'mode': 'min'
}
},
'HUMANACTMetrics': {
'Metrics/Accuracy': {
'abbr': 'Accuracy',
'mode': 'max'
}
},
'UESTCMetrics': {
'Metrics/Accuracy': {
'abbr': 'Accuracy',
'mode': 'max'
}
},
'UncondMetrics': {
'Metrics/FID': {
'abbr': 'FID',
'mode': 'min'
}
}
}
checkpointParams.update({
'every_n_epochs': cfg.LOGGER.VAL_EVERY_STEPS,
'save_top_k': 1,
})
for metric in metrics:
if metric in metric_monitor_map.keys():
metric_monitors = metric_monitor_map[metric]
# Delete R3 if training VAE
if cfg.TRAIN.STAGE == 'vae' and metric == 'TM2TMetrics':
del metric_monitors['Metrics/R_precision_top_3']
for metric_monitor in metric_monitors:
checkpointParams.update({
'filename':
metric_monitor_map[metric][metric_monitor]['mode']
+ "-" +
metric_monitor_map[metric][metric_monitor]['abbr']
+ "{ep}",
'monitor':
metric_monitor,
'mode':
metric_monitor_map[metric][metric_monitor]['mode'],
})
callbacks.append(
ModelCheckpoint(**checkpointParams))
return callbacks
class progressBar(RichProgressBar):
def __init__(self, ):
super().__init__()
def get_metrics(self, trainer, model):
# Don't show the version number
items = super().get_metrics(trainer, model)
items.pop("v_num", None)
return items
class progressLogger(Callback):
def __init__(self,
logger,
metric_monitor: dict,
precision: int = 3,
log_every_n_steps: int = 1):
# Metric to monitor
self.logger = logger
self.metric_monitor = metric_monitor
self.precision = precision
self.log_every_n_steps = log_every_n_steps
def on_train_start(self, trainer: Trainer, pl_module: LightningModule,
**kwargs) -> None:
self.logger.info("Training started")
def on_train_end(self, trainer: Trainer, pl_module: LightningModule,
**kwargs) -> None:
self.logger.info("Training done")
def on_validation_epoch_end(self, trainer: Trainer,
pl_module: LightningModule, **kwargs) -> None:
if trainer.sanity_checking:
self.logger.info("Sanity checking ok.")
def on_train_epoch_end(self,
trainer: Trainer,
pl_module: LightningModule,
padding=False,
**kwargs) -> None:
metric_format = f"{{:.{self.precision}e}}"
line = f"Epoch {trainer.current_epoch}"
if padding:
line = f"{line:>{len('Epoch xxxx')}}" # Right padding
if trainer.current_epoch % self.log_every_n_steps == 0:
metrics_str = []
losses_dict = trainer.callback_metrics
for metric_name, dico_name in self.metric_monitor.items():
if dico_name in losses_dict:
metric = losses_dict[dico_name].item()
metric = metric_format.format(metric)
metric = f"{metric_name} {metric}"
metrics_str.append(metric)
line = line + ": " + " ".join(metrics_str)
self.logger.info(line)
|