Spaces:
Runtime error
Runtime error
bill-jiang
commited on
Commit
·
dbb6927
1
Parent(s):
4a885d5
Update render method
Browse files- app.py +2 -2
- assets/videos/example0.mp4 +0 -0
- assets/videos/example2.mp4 +0 -0
- assets/videos/example4.mp4 +0 -0
- assets/videos/example5.mp4 +0 -0
- assets/videos/example6.mp4 +0 -0
- assets/videos/example7.mp4 +0 -0
- assets/videos/example8.mp4 +0 -0
- mGPT/render/pyrender/smpl_render.py +54 -106
app.py
CHANGED
@@ -125,8 +125,8 @@ def render_motion(data, feats, method='fast'):
|
|
125 |
r = RRR.from_rotvec(np.array([np.pi, 0.0, 0.0]))
|
126 |
pose[:, 0] = np.matmul(r.as_matrix().reshape(1, 3, 3), pose[:, 0])
|
127 |
vid = []
|
128 |
-
aroot = data[
|
129 |
-
aroot[:, 1] = -aroot[:, 1]
|
130 |
params = dict(pred_shape=np.zeros([1, 10]),
|
131 |
pred_root=aroot,
|
132 |
pred_pose=pose)
|
|
|
125 |
r = RRR.from_rotvec(np.array([np.pi, 0.0, 0.0]))
|
126 |
pose[:, 0] = np.matmul(r.as_matrix().reshape(1, 3, 3), pose[:, 0])
|
127 |
vid = []
|
128 |
+
aroot = data[:, 0]
|
129 |
+
aroot[:, 1:] = -aroot[:, 1:]
|
130 |
params = dict(pred_shape=np.zeros([1, 10]),
|
131 |
pred_root=aroot,
|
132 |
pred_pose=pose)
|
assets/videos/example0.mp4
CHANGED
Binary files a/assets/videos/example0.mp4 and b/assets/videos/example0.mp4 differ
|
|
assets/videos/example2.mp4
CHANGED
Binary files a/assets/videos/example2.mp4 and b/assets/videos/example2.mp4 differ
|
|
assets/videos/example4.mp4
CHANGED
Binary files a/assets/videos/example4.mp4 and b/assets/videos/example4.mp4 differ
|
|
assets/videos/example5.mp4
CHANGED
Binary files a/assets/videos/example5.mp4 and b/assets/videos/example5.mp4 differ
|
|
assets/videos/example6.mp4
CHANGED
Binary files a/assets/videos/example6.mp4 and b/assets/videos/example6.mp4 differ
|
|
assets/videos/example7.mp4
CHANGED
Binary files a/assets/videos/example7.mp4 and b/assets/videos/example7.mp4 differ
|
|
assets/videos/example8.mp4
CHANGED
Binary files a/assets/videos/example8.mp4 and b/assets/videos/example8.mp4 differ
|
|
mGPT/render/pyrender/smpl_render.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
os.environ['PYOPENGL_PLATFORM'] = 'egl'
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
import cv2
|
@@ -10,94 +8,61 @@ import glob
|
|
10 |
import pickle
|
11 |
import pyrender
|
12 |
import trimesh
|
|
|
|
|
13 |
from shapely import geometry
|
14 |
from smplx import SMPL as _SMPL
|
15 |
from smplx.utils import SMPLOutput as ModelOutput
|
16 |
from scipy.spatial.transform.rotation import Rotation as RRR
|
17 |
|
18 |
-
|
19 |
-
class SMPL(_SMPL):
|
20 |
-
""" Extension of the official SMPL implementation to support more joints """
|
21 |
-
|
22 |
-
def __init__(self, *args, **kwargs):
|
23 |
-
super(SMPL, self).__init__(*args, **kwargs)
|
24 |
-
# joints = [constants.JOINT_MAP[i] for i in constants.JOINT_NAMES]
|
25 |
-
# J_regressor_extra = np.load(config.JOINT_REGRESSOR_TRAIN_EXTRA)
|
26 |
-
# self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra, dtype=torch.float32))
|
27 |
-
# self.joint_map = torch.tensor(joints, dtype=torch.long)
|
28 |
-
|
29 |
-
def forward(self, *args, **kwargs):
|
30 |
-
kwargs['get_skin'] = True
|
31 |
-
smpl_output = super(SMPL, self).forward(*args, **kwargs)
|
32 |
-
# extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices) #Additional 9 joints #Check doc/J_regressor_extra.png
|
33 |
-
# joints = torch.cat([smpl_output.joints, extra_joints], dim=1) #[N, 24 + 21, 3] + [N, 9, 3]
|
34 |
-
# joints = joints[:, self.joint_map, :]
|
35 |
-
joints = smpl_output.joints
|
36 |
-
output = ModelOutput(vertices=smpl_output.vertices,
|
37 |
-
global_orient=smpl_output.global_orient,
|
38 |
-
body_pose=smpl_output.body_pose,
|
39 |
-
joints=joints,
|
40 |
-
betas=smpl_output.betas,
|
41 |
-
full_pose=smpl_output.full_pose)
|
42 |
-
return output
|
43 |
-
|
44 |
-
|
45 |
class Renderer:
|
46 |
"""
|
47 |
Renderer used for visualizing the SMPL model
|
48 |
Code adapted from https://github.com/vchoutas/smplify-x
|
49 |
"""
|
50 |
-
|
51 |
-
def __init__(self,
|
52 |
-
vertices,
|
53 |
-
focal_length=5000,
|
54 |
-
img_res=(224, 224),
|
55 |
-
faces=None):
|
56 |
self.renderer = pyrender.OffscreenRenderer(viewport_width=img_res[0],
|
57 |
-
|
58 |
-
|
|
|
59 |
self.focal_length = focal_length
|
60 |
self.camera_center = [img_res[0] // 2, img_res[1] // 2]
|
61 |
self.faces = faces
|
62 |
-
|
63 |
if torch.cuda.is_available():
|
64 |
self.device = torch.device("cuda")
|
65 |
else:
|
66 |
self.device = torch.device("cpu")
|
67 |
|
68 |
-
self.rot = trimesh.transformations.rotation_matrix(
|
69 |
-
|
70 |
-
|
71 |
minx, miny, minz = vertices.min(axis=(0, 1))
|
72 |
maxx, maxy, maxz = vertices.max(axis=(0, 1))
|
73 |
minx = minx - 0.5
|
74 |
maxx = maxx + 0.5
|
75 |
minz = minz - 0.5
|
76 |
maxz = maxz + 0.5
|
77 |
-
|
78 |
-
floor = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz],
|
79 |
-
[maxx, minz]])
|
80 |
self.floor = trimesh.creation.extrude_polygon(floor, 1e-5)
|
81 |
self.floor.visual.face_colors = [0, 0, 0, 0.2]
|
82 |
self.floor.apply_transform(self.rot)
|
83 |
-
self.floor_pose =
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
87 |
c = -np.pi / 6
|
88 |
-
self.camera_pose = [[1, 0, 0, (minx
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
max(4, minz + (1.5 - miny) * 2, (maxx - minx))
|
95 |
-
], [0, 0, 0, 1]]
|
96 |
-
|
97 |
def __call__(self, vertices, camera_translation):
|
98 |
|
99 |
floor_render = pyrender.Mesh.from_trimesh(self.floor, smooth=False)
|
100 |
-
|
101 |
material = pyrender.MetallicRoughnessMaterial(
|
102 |
metallicFactor=0.1,
|
103 |
alphaMode='OPAQUE',
|
@@ -105,21 +70,18 @@ class Renderer:
|
|
105 |
mesh = trimesh.Trimesh(vertices, self.faces)
|
106 |
mesh.apply_transform(self.rot)
|
107 |
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
108 |
-
|
109 |
-
camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0)
|
110 |
-
|
111 |
-
light = pyrender.DirectionalLight(color=[1,
|
112 |
-
spot_l = pyrender.SpotLight(color=np.ones(3),
|
113 |
-
|
114 |
-
innerConeAngle=np.pi / 16,
|
115 |
-
outerConeAngle=np.pi / 6)
|
116 |
point_l = pyrender.PointLight(color=np.ones(3), intensity=300.0)
|
117 |
-
|
118 |
-
scene = pyrender.Scene(bg_color=(1.,
|
119 |
-
ambient_light=(0.4, 0.4, 0.4))
|
120 |
scene.add(floor_render, pose=self.floor_pose)
|
121 |
scene.add(mesh, 'mesh')
|
122 |
-
|
123 |
light_pose = np.eye(4)
|
124 |
light_pose[:3, 3] = np.array([0, -1, 1])
|
125 |
scene.add(light, pose=light_pose)
|
@@ -129,68 +91,54 @@ class Renderer:
|
|
129 |
|
130 |
light_pose[:3, 3] = np.array([1, 1, 2])
|
131 |
scene.add(light, pose=light_pose)
|
132 |
-
|
133 |
scene.add(camera, pose=self.camera_pose)
|
134 |
-
|
135 |
flags = pyrender.RenderFlags.RGBA | pyrender.RenderFlags.SHADOWS_DIRECTIONAL
|
136 |
color, rend_depth = self.renderer.render(scene, flags=flags)
|
137 |
-
|
138 |
return color
|
139 |
|
140 |
-
|
141 |
class SMPLRender():
|
142 |
-
|
143 |
def __init__(self, SMPL_MODEL_DIR):
|
144 |
if torch.cuda.is_available():
|
145 |
self.device = torch.device("cuda")
|
146 |
else:
|
147 |
self.device = torch.device("cpu")
|
148 |
-
self.smpl = SMPL(SMPL_MODEL_DIR, batch_size=1,
|
149 |
-
|
150 |
|
151 |
self.pred_camera_t = []
|
152 |
self.focal_length = 110
|
153 |
-
|
154 |
def init_renderer(self, res, smpl_param, is_headroot=False):
|
155 |
poses = smpl_param['pred_pose']
|
156 |
pred_rotmats = []
|
157 |
for pose in poses:
|
158 |
-
if pose.size
|
159 |
-
pose = pose.reshape(-1,
|
160 |
pose = RRR.from_rotvec(pose).as_matrix()
|
161 |
-
pose = pose.reshape(1,
|
162 |
-
pred_rotmats.append(
|
163 |
-
torch.from_numpy(pose.astype(np.float32)[None]).to(
|
164 |
-
self.device))
|
165 |
-
|
166 |
pred_rotmat = torch.cat(pred_rotmats, dim=0)
|
167 |
|
168 |
-
pred_betas = torch.from_numpy(smpl_param['pred_shape'].reshape(
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
smpl_output = self.smpl(betas=pred_betas,
|
174 |
-
body_pose=pred_rotmat[:, 1:],
|
175 |
-
global_orient=pred_rotmat[:, 0].unsqueeze(1),
|
176 |
-
pose2rot=False)
|
177 |
-
|
178 |
self.vertices = smpl_output.vertices.detach().cpu().numpy()
|
179 |
|
180 |
-
|
181 |
|
182 |
if is_headroot:
|
183 |
-
|
184 |
-
0, 12].detach().cpu().numpy()
|
185 |
-
|
186 |
-
self.pred_camera_t.append(pred_camera_t)
|
187 |
|
188 |
-
self.
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
192 |
|
193 |
def render(self, index):
|
194 |
-
renderImg = self.renderer(self.vertices[index, ...],
|
195 |
-
self.pred_camera_t)
|
196 |
return renderImg
|
|
|
1 |
import os
|
|
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import cv2
|
|
|
8 |
import pickle
|
9 |
import pyrender
|
10 |
import trimesh
|
11 |
+
import smplx
|
12 |
+
from pathlib import Path
|
13 |
from shapely import geometry
|
14 |
from smplx import SMPL as _SMPL
|
15 |
from smplx.utils import SMPLOutput as ModelOutput
|
16 |
from scipy.spatial.transform.rotation import Rotation as RRR
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
class Renderer:
|
19 |
"""
|
20 |
Renderer used for visualizing the SMPL model
|
21 |
Code adapted from https://github.com/vchoutas/smplify-x
|
22 |
"""
|
23 |
+
def __init__(self, vertices, focal_length=5000, img_res=(224,224), faces=None):
|
|
|
|
|
|
|
|
|
|
|
24 |
self.renderer = pyrender.OffscreenRenderer(viewport_width=img_res[0],
|
25 |
+
viewport_height=img_res[1],
|
26 |
+
point_size=2.0)
|
27 |
+
|
28 |
self.focal_length = focal_length
|
29 |
self.camera_center = [img_res[0] // 2, img_res[1] // 2]
|
30 |
self.faces = faces
|
31 |
+
|
32 |
if torch.cuda.is_available():
|
33 |
self.device = torch.device("cuda")
|
34 |
else:
|
35 |
self.device = torch.device("cpu")
|
36 |
|
37 |
+
self.rot = trimesh.transformations.rotation_matrix(np.radians(180), [1, 0, 0])
|
38 |
+
|
|
|
39 |
minx, miny, minz = vertices.min(axis=(0, 1))
|
40 |
maxx, maxy, maxz = vertices.max(axis=(0, 1))
|
41 |
minx = minx - 0.5
|
42 |
maxx = maxx + 0.5
|
43 |
minz = minz - 0.5
|
44 |
maxz = maxz + 0.5
|
45 |
+
|
46 |
+
floor = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]])
|
|
|
47 |
self.floor = trimesh.creation.extrude_polygon(floor, 1e-5)
|
48 |
self.floor.visual.face_colors = [0, 0, 0, 0.2]
|
49 |
self.floor.apply_transform(self.rot)
|
50 |
+
self.floor_pose =np.array([[ 1, 0, 0, 0],
|
51 |
+
[ 0, np.cos(np.pi / 2), -np.sin(np.pi / 2), miny],
|
52 |
+
[ 0, np.sin(np.pi / 2), np.cos(np.pi / 2), 0],
|
53 |
+
[ 0, 0, 0, 1]])
|
54 |
+
|
55 |
c = -np.pi / 6
|
56 |
+
self.camera_pose = [[ 1, 0, 0, (minx+maxx)/2],
|
57 |
+
[ 0, np.cos(c), -np.sin(c), 1.5],
|
58 |
+
[ 0, np.sin(c), np.cos(c), max(4, minz+(1.5-miny)*2, (maxx-minx))],
|
59 |
+
[ 0, 0, 0, 1]
|
60 |
+
]
|
61 |
+
|
|
|
|
|
|
|
62 |
def __call__(self, vertices, camera_translation):
|
63 |
|
64 |
floor_render = pyrender.Mesh.from_trimesh(self.floor, smooth=False)
|
65 |
+
|
66 |
material = pyrender.MetallicRoughnessMaterial(
|
67 |
metallicFactor=0.1,
|
68 |
alphaMode='OPAQUE',
|
|
|
70 |
mesh = trimesh.Trimesh(vertices, self.faces)
|
71 |
mesh.apply_transform(self.rot)
|
72 |
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
73 |
+
|
74 |
+
camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0))
|
75 |
+
|
76 |
+
light = pyrender.DirectionalLight(color=[1,1,1], intensity=350)
|
77 |
+
spot_l = pyrender.SpotLight(color=np.ones(3), intensity=300.0,
|
78 |
+
innerConeAngle=np.pi/16, outerConeAngle=np.pi/6)
|
|
|
|
|
79 |
point_l = pyrender.PointLight(color=np.ones(3), intensity=300.0)
|
80 |
+
|
81 |
+
scene = pyrender.Scene(bg_color=(1.,1.,1.,0.8),ambient_light=(0.4, 0.4, 0.4))
|
|
|
82 |
scene.add(floor_render, pose=self.floor_pose)
|
83 |
scene.add(mesh, 'mesh')
|
84 |
+
|
85 |
light_pose = np.eye(4)
|
86 |
light_pose[:3, 3] = np.array([0, -1, 1])
|
87 |
scene.add(light, pose=light_pose)
|
|
|
91 |
|
92 |
light_pose[:3, 3] = np.array([1, 1, 2])
|
93 |
scene.add(light, pose=light_pose)
|
94 |
+
|
95 |
scene.add(camera, pose=self.camera_pose)
|
96 |
+
|
97 |
flags = pyrender.RenderFlags.RGBA | pyrender.RenderFlags.SHADOWS_DIRECTIONAL
|
98 |
color, rend_depth = self.renderer.render(scene, flags=flags)
|
99 |
+
|
100 |
return color
|
101 |
|
|
|
102 |
class SMPLRender():
|
|
|
103 |
def __init__(self, SMPL_MODEL_DIR):
|
104 |
if torch.cuda.is_available():
|
105 |
self.device = torch.device("cuda")
|
106 |
else:
|
107 |
self.device = torch.device("cpu")
|
108 |
+
# self.smpl = SMPL(SMPL_MODEL_DIR, batch_size=1, create_transl=False).to(self.device)
|
109 |
+
self.smpl = smplx.create(Path(SMPL_MODEL_DIR).parent, model_type="smpl", gender="neutral", ext="npz", batch_size=1).to(self.device)
|
110 |
|
111 |
self.pred_camera_t = []
|
112 |
self.focal_length = 110
|
113 |
+
|
114 |
def init_renderer(self, res, smpl_param, is_headroot=False):
|
115 |
poses = smpl_param['pred_pose']
|
116 |
pred_rotmats = []
|
117 |
for pose in poses:
|
118 |
+
if pose.size==72:
|
119 |
+
pose = pose.reshape(-1,3)
|
120 |
pose = RRR.from_rotvec(pose).as_matrix()
|
121 |
+
pose = pose.reshape(1,24,3,3)
|
122 |
+
pred_rotmats.append(torch.from_numpy(pose.astype(np.float32)[None]).to(self.device))
|
|
|
|
|
|
|
123 |
pred_rotmat = torch.cat(pred_rotmats, dim=0)
|
124 |
|
125 |
+
pred_betas = torch.from_numpy(smpl_param['pred_shape'].reshape(1, 10).astype(np.float32)).to(self.device)
|
126 |
+
pred_root = torch.tensor(smpl_param['pred_root'].reshape(-1, 3).astype(np.float32),device=self.device)
|
127 |
+
smpl_output = self.smpl(betas=pred_betas, body_pose=pred_rotmat[:, 1:],transl=pred_root, global_orient=pred_rotmat[:, :1], pose2rot=False)
|
128 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
self.vertices = smpl_output.vertices.detach().cpu().numpy()
|
130 |
|
131 |
+
pred_root = pred_root[0]
|
132 |
|
133 |
if is_headroot:
|
134 |
+
pred_root = pred_root - smpl_output.joints[0,12].detach().cpu().numpy()
|
|
|
|
|
|
|
135 |
|
136 |
+
self.pred_camera_t.append(pred_root)
|
137 |
+
|
138 |
+
self.renderer = Renderer(vertices=self.vertices, focal_length=self.focal_length,
|
139 |
+
img_res=(res[1], res[0]), faces=self.smpl.faces)
|
140 |
+
|
141 |
|
142 |
def render(self, index):
|
143 |
+
renderImg = self.renderer(self.vertices[index, ...], self.pred_camera_t)
|
|
|
144 |
return renderImg
|